Influenza type A virus M protein expression on infected cells is responsible for cross-reactive recognition by cytotoxic thymus-derived lymphocytes

1980 ◽  
Vol 29 (2) ◽  
pp. 719-723 ◽  
Author(s):  
C S Reiss ◽  
J L Schulman

M protein of influenza A virus was detected with rabbit antiserum by both indirect immunofluorescence and by antibody plus complement-mediated cytolysis on the cell surfaces of both productively and nonproductively infected cells. In contrast, antiserum to nucleoprotein failed to react with unfixed infected cells, but did bind to fixed infected cells, especially in the perinuclear area. Incorporation of antiserum to M protein in a T-cell-mediated cytotoxicity assay produced almost complete abrogation of lysis of H-2-compatible cells infected with an influenza A virus of a subtype which differed from that used to elicit the cytotoxic T cells. However, the antibody did not significantly block 51Cr release from cells infected with the homotypic type A influenza virus. These observations are in accord with the hypothesis that the cross-reactive cytotoxic T-cell responses seen with cells infected by heterotypic influenza A viruses are due to recognition of a common M protein.

Vaccine ◽  
1999 ◽  
Vol 18 (7-8) ◽  
pp. 681-691 ◽  
Author(s):  
Anders Fomsgaard ◽  
Henrik V Nielsen ◽  
Nikolai Kirkby ◽  
Karin Bryder ◽  
Sylvie Corbet ◽  
...  

1978 ◽  
Vol 148 (2) ◽  
pp. 534-543 ◽  
Author(s):  
P C Doherty ◽  
W E Biddison ◽  
J R Bennink ◽  
B B Knowles

Secondary effector T-cell populations generated by cross-priming with heterologous influenza A viruses operate only in H-2K or H-2D compatible situations, when assayed on SV40-transformed target cells infected with a range of influenza A viruses. The H2-Kb allele is associated with a total failure in the generation of influenza-immune cytotoxic T cells, though this is not seen for the primary response to vaccinia virus. In both influenza and vaccinia development of effector T cells operating at H-2Db is greatly depressed in B10.A(2R) (kkkddb) and B10.A(4R) (kkbbbb), but not in B10 (bbbbbb), mice. However, there is no defect in viral antigen expression at either H-2Kk or H-2Db in B10.A(2R) target cells. This apparently reflects some inadequacy in the stimulator environment, as (A/J X B6) F1 T cells can be induced to respond at H-2Db when exposed to vaccinia virus in an irradiated B6 but not in a B10.A(4R) recipient. The present report, together with the accompanying paper by Zinkernagel and colleagues, records the first rigorous demonstration of both a nonresponder situation and a probable Ir-gene effect for conventional infectious viruses. Possible implications for the evolution of H-2 polymorphism and mechanisms of Ir gene function are discussed.


1979 ◽  
Vol 149 (1) ◽  
pp. 150-157 ◽  
Author(s):  
P C Doherty ◽  
J C Bennink

BALB/c (H-2Kd-Dd) spleen and lymph node populations were specifically depleted of alloreactive potential by filtration through H-2 different, irradiated recipients. These negatively selected T cells were then stimulated with vaccinia virus in mice expressing the foreign H-2 determinants encountered previously in the filter environment. Strong virus-immune cytotoxic T-cell responses were seen in the context of H-2Kk and H-2Ks, but not 2H-2Kb. The T cells generated were not cross-reactive for the H-2Kk and H-2Kd alleles, and responsiveness was independent of concurrent presence of effector populations operating at H-2D. These findings are consisent with the idea that recognition is mediated via a complex receptor, part of which is specific for virus and part for self H-2. The capacity to interact with allogeneic, virus-infected cells may then reflect aberrant recognition of a virus-H-2-antigen complex by this single, large binding site. For instance, the T cell which would normally recognize H-2Kd-virus x, or H-2Dd-minor histocompatibility antigen Z, may now show specificity for H-2Kk-vaccinia virus. Implications for both the selective role of the thymus and for mechanisms of tolerance are discussed.


2013 ◽  
Vol 20 (8) ◽  
pp. 1333-1337 ◽  
Author(s):  
Rogier Bodewes ◽  
Martina M. Geelhoed-Mieras ◽  
Jens Wrammert ◽  
Rafi Ahmed ◽  
Patrick C. Wilson ◽  
...  

ABSTRACTInfluenza A viruses cause annual epidemics and occasionally pandemics. Antibodies directed to the conserved viral nucleoprotein (NP) may play a role in immunity against various influenza A virus subtypes. Here, we assessed the immunological significance of a human monoclonal antibody directed to NPin vitro. This antibody bound to virus-infected cells but did not display virus-neutralizing activity, complement-dependent cell cytotoxicity, or opsonization of viral antigen for improved antigen presentation to CD8+T cells by dendritic cells.


2007 ◽  
Vol 179 (9) ◽  
pp. 6153-6159 ◽  
Author(s):  
Biao Zheng ◽  
Yongxin Zhang ◽  
Hongxia He ◽  
Ekaterina Marinova ◽  
Kirsten Switzer ◽  
...  

2005 ◽  
Vol 79 (7) ◽  
pp. 4329-4339 ◽  
Author(s):  
Samita S. Andreansky ◽  
John Stambas ◽  
Paul G. Thomas ◽  
Weidong Xie ◽  
Richard J. Webby ◽  
...  

ABSTRACT The extent to which CD8+ T cells specific for other antigens expand to compensate for the mutational loss of the prominent DbNP366 and DbPA224 epitopes has been investigated using H1N1 and H3N2 influenza A viruses modified by reverse genetics. Significantly increased numbers of CD8+ KbPB1703 +, CD8+ KbNS2114 +, and CD8+ DbPB1-F262 + T cells were found in the spleen and in the inflammatory population recovered by bronchoalveolar lavage from mice that were first given the −NP−PA H1N1 virus intraperitoneally and then challenged intranasally with the homologous H3N2 virus. The effect was less consistent when this prime-boost protocol was reversed. Also, though the quality of the response measured by cytokine staining showed some evidence of modification when these minor CD8+-T-cell populations were forced to play a more prominent part, the effects were relatively small and no consistent pattern emerged. The magnitude of the enhanced clonal expansion following secondary challenge suggested that the prime-boost with the −NP−PA viruses gave a response overall that was little different in magnitude from that following comparable exposure to the unmanipulated viruses. This was indeed shown to be the case when the total response was measured by ELISPOT analysis with virus-infected cells as stimulators. More surprisingly, the same effect was seen following primary challenge, though individual analysis of the CD8+ KbPB1703 +, CD8+ KbNS2114 +, and CD8+ DbPB1-F262 + sets gave no indication of compensatory expansion. A possible explanation is that novel, as yet undetected epitopes emerge following primary exposure to the −NP−PA deletion viruses. These findings have implications for both natural infections and vaccines.


2001 ◽  
Vol 13 (11) ◽  
pp. 1373-1381 ◽  
Author(s):  
Thomas M. Lawson ◽  
Stephen Man ◽  
Sheila Williams ◽  
Adrianus C. M. Boon ◽  
Maria Zambon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document