scholarly journals Characterization of the Thermal Stress Response ofCampylobacter jejuni

1998 ◽  
Vol 66 (8) ◽  
pp. 3666-3672 ◽  
Author(s):  
Michael E. Konkel ◽  
Bong J. Kim ◽  
John D. Klena ◽  
Colin R. Young ◽  
Richard Ziprin

ABSTRACT Campylobacter jejuni, a microaerophilic, gram-negative bacterium, is a common cause of gastrointestinal disease in humans. Heat shock proteins are a group of highly conserved, coregulated proteins that play important roles in enabling organisms to cope with physiological stresses. The primary aim of this study was to characterize the heat shock response of C. jejuni. Twenty-four proteins were preferentially synthesized by C. jejuni immediately following heat shock. Upon immunoscreening ofEscherichia coli transformants harboring aCampylobacter genomic DNA library, one recombinant plasmid that encoded a heat shock protein was isolated. The recombinant plasmid, designated pMEK20, contained an open reading frame of 1,119 bp that was capable of encoding a protein of 372 amino acids with a calculated molecular mass of 41,436 Da. The deduced amino acid sequence of the open reading frame shared similarity with that of DnaJ, which belongs to the Hsp-40 family of molecular chaperones, from a number of bacteria. An E. coli dnaJ mutant was successfully complemented with the pMEK20 recombinant plasmid, as judged by the ability of bacteriophage λ to form plaques, indicating that theC. jejuni gene encoding the 41-kDa protein is a functional homolog of the dnaJ gene from E. coli. The ability of each of two C. jejuni dnaJ mutants to form colonies at 46°C was severely retarded, indicating that DnaJ plays an important role in C. jejuni thermotolerance. Experiments revealed that a C. jejuni DnaJ mutant was unable to colonize newly hatched Leghorn chickens, suggesting that heat shock proteins play a role in vivo.

1998 ◽  
Vol 180 (19) ◽  
pp. 5165-5172 ◽  
Author(s):  
Jeffrey G. Thomas ◽  
François Baneyx

ABSTRACT We have constructed an Escherichia coli strain lacking the small heat shock proteins IbpA and IbpB and compared its growth and viability at high temperatures to those of isogenic cells containing null mutations in the clpA, clpB, orhtpG gene. All mutants exhibited growth defects at 46°C, but not at lower temperatures. However, the clpA,htpG, and ibp null mutations did not reduce cell viability at 50°C. When cultures were allowed to recover from transient exposure to 50°C, all mutations except Δibpled to suboptimal growth as the recovery temperature was raised. Deletion of the heat shock genes clpB and htpGresulted in growth defects at 42°C when combined with thednaK756 or groES30 alleles, while the Δibp mutation had a detrimental effect only on the growth of dnaK756 mutants. Neither the overexpression of these heat shock proteins nor that of ClpA could restore the growth ofdnaK756 or groES30 cells at high temperatures. Whereas increased levels of host protein aggregation were observed indnaK756 and groES30 mutants at 46°C compared to wild-type cells, none of the null mutations had a similar effect. These results show that the highly conserved E. coli small heat shock proteins are dispensable and that their deletion results in only modest effects on growth and viability at high temperatures. Our data also suggest that ClpB, HtpG, and IbpA and -B cooperate with the major E. coli chaperone systems in vivo.


2014 ◽  
Vol 21 (6) ◽  
pp. 564-571 ◽  
Author(s):  
Sourav Roy ◽  
Monobesh Patra ◽  
Suman Nandy ◽  
Milon Banik ◽  
Rakhi Dasgupta ◽  
...  

2016 ◽  
Vol 9 (2) ◽  
pp. 84-96
Author(s):  
Sanchari Bhattacharjee ◽  
Rakhi Dasgupta ◽  
Angshuman Bagchi

1995 ◽  
Vol 348 (1323) ◽  
pp. 107-112 ◽  

The recent discovery of molecular chaperones and their functions has changed dramatically our view of the processes underlying the folding of proteins in vivo . Rather than folding spontaneously, most newly synthesized polypeptide chains seem to acquire their native conformations in a reaction mediated by chaperone proteins. Different classes of molecular chaperones, such as the members of the Hsp70 and Hsp60 families of heat-shock proteins, cooperate in a coordinated pathway of cellular protein folding.


1995 ◽  
Vol 182 (3) ◽  
pp. 885-889 ◽  
Author(s):  
D Arnold ◽  
S Faath ◽  
H Rammensee ◽  
H Schild

Vaccination of mice with heat shock proteins isolated from tumor cells induces immunity to subsequent challenge with those tumor cells the heat shock protein was isolated from but not with other tumor cells (Udono, H., and P.K. Srivastava. 1994. J. Immunol. 152:5398-5403). The specificity of this immune response is caused by tumor-derived peptides bound to the heat shock proteins (Udono., H., and P.K. Srivastava. 1993. J. Exp. Med. 178:1391-1396). Our experiments show that a single immunization with the heat shock protein gp96 isolated from beta-galactosidase (beta-gal) expressing P815 cells (of DBA/2 origin) induces cytotoxic T lymphocytes (CTLs) specific for beta-gal, in addition to minor H antigens expressed by these cells. CTLs can be induced in mice that are major histocompatibility complex (MHC) identical to the gp96 donor cells (H-2d) as well as in mice with a different MHC (H-2b). Thus gp96 is able to induce "cross priming" (Matzinger, P., and M.J. Bevan. 1977. Cell. Immunol. 33:92-100), indicating that gp96-associated peptides are not limited to the MHC class I ligands of the gp96 donor cell. Our data confirm the notion that samples of all cellular antigens presentable by MHC class I molecules are represented by peptides associated with gp96 molecules of that cell, even if the fitting MHC molecule is not expressed. In addition, we extend previous reports on the in vivo immunogenicity of peptides associated gp96 molecules to two new groups of antigens, minor H antigens, and proteins expressed in the cytosol.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Ryan Mercer ◽  
Oanh Nguyen ◽  
Qixing Ou ◽  
Lynn McMullen ◽  
Michael G. Gänzle

ABSTRACT The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae, including pathogenic strains of Salmonella enterica and Escherichia coli. The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1 GI, yfdX2, hdeD GI, orf11, trx GI, kefB, and psiE GI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript “GI” [genomic island] if an ortholog of the same gene is present in genomes of E. coli.) LHR-encoded heat shock proteins sHSP20, ClpKGI, and sHSPGI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trx GI, kefB, and psiE GI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA. In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food.


1982 ◽  
Vol 2 (3) ◽  
pp. 286-292
Author(s):  
S C Wadsworth

At least four proteins of 70,000 to 75,000 molecular weight (70-75K) were synthesized from mRNA which hybridized with a cloned heat shock gene previously shown to be localized to the 87A and 87C heat shock puff sites. These in vitro-synthesized proteins were indistinguishable from in vivo-synthesized heat shock-induced proteins when analyzed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of the pattern of this group of proteins synthesized in vivo during a 5-min pulse or during continuous labeling indicates that the 72-75K proteins are probably not kinetic precursors to the major 70K heat shock protein. Partial digestion products generated with V8 protease indicated that the 70-75K heat shock proteins are closely related, but that there are clear differences between them. The partial digestion patterns obtained from heat shock proteins from the Kc cell line and from the Oregon R strain of Drosophila melanogaster are very similar. Genetic analysis of the patterns of 70-75K heat shock protein synthesis indicated that the genes encoding at least two of the three 72-75K heat shock proteins are located outside of the major 87A and 87C puff sites.


Author(s):  
Krystyna Cybulska ◽  
Sanaa Mahdi Oraibi ◽  
Andrzej Miskiewicz ◽  
Anna Misiewicz ◽  
Paweł Kowalczyk

Sign in / Sign up

Export Citation Format

Share Document