scholarly journals A Monoclonal Antibody Directed against a Candida albicans Cell Wall Mannoprotein Exerts Three Anti-C. albicans Activities

2003 ◽  
Vol 71 (9) ◽  
pp. 5273-5279 ◽  
Author(s):  
María D. Moragues ◽  
Miren J. Omaetxebarria ◽  
Natalia Elguezabal ◽  
María J. Sevilla ◽  
Stefania Conti ◽  
...  

ABSTRACT Antibodies are believed to play a role in the protection against Candida albicans infections by a number of mechanisms, including the inhibition of adhesion or germ tube formation, opsonization, neutralization of virulence-related enzymes, and direct candidacidal activity. Although some of these biological activities have been demonstrated individually in monoclonal antibodies (MAbs), it is not clear if all these anti-C. albicans activities can be displayed by a single antibody. In this report, we characterized a monoclonal antibody raised against the main target of salivary secretory immunoglobulin A in the cell wall of C. albicans, which exerts three anti-C. albicans activities: (i) inhibition of adherence to HEp-2 cells, (ii) inhibition of germination, and (iii) direct candidacidal activity. MAb C7 reacted with a proteinic epitope from a mannoprotein with a molecular mass of >200 kDa predominantly expressed on the C. albicans germ tube cell wall surface as well as with a number of antigens from Candida lusitaniae, Cryptococcus neoformans, Aspergillus fumigatus, and Scedosporium prolificans. MAb C7 caused a 31.1% inhibition in the adhesion of C. albicans to HEp-2 monolayers and a 55.3% inhibition in the adhesion of C. albicans to buccal epithelial cells, produced a 38.5% decrease in the filamentation of C. albicans, and exhibited a potent fungicidal effect against C. albicans, C. lusitaniae, Cryptococcus neoformans, A. fumigatus, and S. prolificans, showing reductions in fungal growth ranging from 34.2 to 88.7%. The fungicidal activity showed by MAb C7 seems to be related to that reported by antibodies mimicking the activity of a killer toxin produced by the yeast Pichia anomala, since one of these MAbs also reacted with the C. albicans mannoprotein with a molecular mass of >200 kDa. Results presented in this study support the concept of a family of microbicidal antibodies that could be useful in the treatment of a wide range of microbial infections when used alone or in combination with current antimicrobial agents.

2000 ◽  
Vol 38 (1) ◽  
pp. 61-67
Author(s):  
Agnes Marot-Leblond ◽  
Linda Grimaud ◽  
Sandrine Nail ◽  
Sandrine Bouterige ◽  
Veronique Apaire-Marchais ◽  
...  

ABSTRACT Hydrophobic components of the germ tube of the dimorphic pathogenic fungus Candida albicans were used as immunogens to prepare monoclonal antibodies (MAbs). Among the resulting MAbs, one (MAb 16B1-F10) was shown by indirect immunofluorescence to be specific to the surface of the mycelium phase of the C. albicans and C. stellatoidea species. No labeling of any other genera and Candida species tested was observed, including C. dubliniensis , a newly described species which has many phenotypic similarities to C. albicans . This phase-specific epitope resides on a protein moiety. The molecular mass of the antigen released by Zymolyase digestion was determined by gel filtration and ranges from 25 to 166 kDa. The antigen was also shown to be highly hydrophobic. This anti- C. albicans cell wall surface-specific MAb may be a good candidate for use in tests for the rapid differentiation of the two closely related species C. albicans and C. dubliniensis .


Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2641-2651 ◽  
Author(s):  
Amparo Galán ◽  
Manuel Casanova ◽  
Amelia Murgui ◽  
Donna M. MacCallum ◽  
Frank C. Odds ◽  
...  

Immunoscreening of a Candida albicans cDNA library with a polyclonal germ-tube-specific antibody (pAb anti-gt) resulted in the isolation of a gene encoding a lysine/glutamic-acid-rich protein, which was consequently designated KER1. The nucleotide and deduced amino acid sequences of this gene displayed no significant homology with any other known sequence. KER1 encodes a 134 kDa lysine (14·5 %)/glutamic acid (16·7 %) protein (Ker1p) that contains two potential transmembrane segments. KER1 was expressed in a pH-conditional manner, with maximal expression at alkaline pH and lower expression at pH 4·0, and was regulated by RIM101. A Δker1/Δker1 null mutant grew normally but was hyperflocculant under germ-tube-inducing conditions, yet this behaviour was also observed in stationary-phase cells grown under other incubation conditions. Western blotting analysis of different subcellular fractions, using as a probe a monospecific polyclonal antibody raised against a highly antigenic domain of Ker1p (pAb anti-Ker1p), revealed the presence of a 134 kDa band in the purified plasma-membrane fraction from the wild-type strain that was absent in the homologous preparation from Δker1/Δker1 mutant. The pattern of cell-wall protein and mannoprotein species released by digestion with β-glucanases, reactive towards pAbs anti-gt and anti-Ker1p, as well as against concanavalin A, was also different in the Δker1/Δker1 mutant. Mutant strains also displayed an increased cell-surface hydrophobicity and sensitivity to Congo red and Calcofluor white. Overall, these findings indicate that the mutant strain was affected in cell-wall composition and/or structure. The fact that the ker1 mutant had attenuated virulence in systemic mouse infections suggests that this surface protein is also important in host–fungus interactions.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Kátia Santana Cruz ◽  
Emerson Silva Lima ◽  
Marcia de Jesus Amazonas da Silva ◽  
Erica Simplício de Souza ◽  
Andreia Montoia ◽  
...  

Background. Cryptococcosis is a fungal disease of bad prognosis due to its pathogenicity and the toxicity of the drugs used for its treatment. The aim of this study was to investigate the medicinal potential of carbazole and β-carboline alkaloids and derivatives against Cryptococcus neoformans and C. gattii. Methods. MICs were established in accordance with the recommendations of the Clinical and Laboratory Standards Institute for alkaloids and derivatives against C. neoformans and C. gattii genotypes VNI and VGI, respectively. A single active compound was further evaluated against C. neoformans genotypes VNII, VNIII, and VNIV, C. gattii genotypes VGI, VGIII, and VGIV, Candida albicans ATCC 36232, for cytotoxicity against the MRC-5 lineage of human fibroblasts and for effects on fungal cells (cell wall, ergosterol, and leakage of nucleic acids). Results. Screening of 11 compounds revealed 8-nitroharmane as a significant inhibitor (MIC 40 μg/mL) of several C. neoformans and C. gattii genotypes. It was not toxic to fibroblasts (IC50 > 50 µg/mL) nor did it alter fungal cell walls or the concentration of ergosterol in C. albicans or C. neoformans. It increased leakage of substances that absorb at 260 nm. Conclusions. The synthetic β-carboline 8-nitroharmane significantly inhibits pathogenic Cryptococcus species and is interesting as a lead compound towards new therapy for Cryptococcus infections.


2001 ◽  
Vol 39 (5) ◽  
pp. 395-400 ◽  
Author(s):  
C. Guyard ◽  
P. Evrard ◽  
A. M. Corbisier-Colson ◽  
H. Louvart ◽  
E. Dei-Cas ◽  
...  

2011 ◽  
Vol 93 (5) ◽  
pp. 2099-2108 ◽  
Author(s):  
Lan Ge ◽  
Li Wang ◽  
Qiu-He Song ◽  
Ming-Fu Yang ◽  
Ren-Mei Sun ◽  
...  

1994 ◽  
Vol 40 (4) ◽  
pp. 266-272 ◽  
Author(s):  
Kevin C. Hazen ◽  
Pati M. Glee

Cell surface hydrophobicity influences adhesion and virulence of the opportunistic fungal pathogen Candida albicans. Previous studies have shown that cell surface hydrophobicity is due to specific proteins that are exposed on hydrophobic cells but are masked by long fibrils on hydrophilic cells. This observation suggests that hydrophobic cell wall proteins may contain little or no mannosylation. In the present study, the glycosylation levels of three hydrophobic cell wall proteins (molecular mass range between 36 and 40 kDa) derived from yeast cells were examined. One hydrophilic protein (90 kDa) was also tested. Various endoglycosidases (endoglycosidase F – N-glycosidase F, O-glycosidase, β-mannosidase, N-glycosidase F), an exoglycosidase (α-mannosidase), and trifluoromethane sulfonic acid were used to deglycosylate the proteins. All four proteins were reactive to the lectin concanavalin A, demonstrating that they were mannoproteins. However, gel electrophoresis of the control and treated proteins revealed that mannosyl groups of hydrophobic proteins were less than 2 kDa in size, while the mannosyl group of the hydrophilic protein had a molecular mass of approximately 20 kDa. These results suggest that unlike many hydrophilic proteins, hydrophobic proteins may have low levels of glycosylation. Changes in glycosylation may determine exposure of hydrophobic protein regions at the cell surface.Key words: Candida albicans, cell wall, mannoproteins, hydrophobicity, fibrils.


Sign in / Sign up

Export Citation Format

Share Document