scholarly journals Identification of a Thiol-Disulfide Oxidoreductase (SdbA) catalyzing Disulfide Bond Formation in the Superantigen SpeA in Streptococcus pyogenes

2021 ◽  
Author(s):  
Song F. Lee ◽  
Lydia Li ◽  
Naif Jalal ◽  
Scott A. Halperin

Mechanisms of disulfide bond formation in the human pathogen Streptococcus pyogenes is currently unknown. To date, no disulfide bond forming thiol-disulfide oxidoreductase (TDOR) has been described and at least one disulfide bonded protein is known in S. pyogenes . This protein is the superantigen SpeA, which contains 3 cysteine residues (Cys 87, Cys90, and Cys98), and has a disulfide bond is formed between Cys87 and Cys98. In this study, candidate TDORs were identified from the genome seuence of S. pyogenes MGAS8232. Using mutational and biochemical approaches, one of the candidate proteins, SpyM18_2037 (named here SdbA), was shown to be the catalyst that introduces the disulfide bond in SpeA. SpeA in the culture supernatant remained reduced when sdbA was inactivated and restored to the oxidized state when a functional copy of sdbA was returned to the sdbA -knockout mutant. SdbA has a typical C 46 XXC 49 active site motif commonly found in TDORs. Site-directed mutagenesis experiments showed that the cysteines in the CXXC motif were required the disulfide bond in SpeA to form. Interactions between SdbA and SpeA were examined using cysteine variant proteins. The results showed that SdbA C49A formed a mixed disulfide with SpeA C87A , suggesting that the N-terminal Cys46 of SdbA and the C-terminal Cys98 of SpeA participated in the initial reaction. SpeA oxidized by SdbA displayed biological activities suggesting that SpeA was properly folded following oxidation by SdbA. In conclusion, formation of the disulfide bond in SpeA is catalyzed by SdbA and the findings represent the first report of disulfide bond formation in S. pyogenes . IMPORTANCE Here, we reported the first example of disulfide bond formation in Streptococcus pyogenes . The results showed that a thiol-disulfide oxidoreductase, named SdbA, is responsible for introducing the disulfide bond in the superantigen SpeA. The cysteine residues in the CXXC motif of SdbA are needed for catalyzing the disulfide bond in SpeA. The disulfide bond in SpeA and neighboring amino acids form a disulfide loop that is conserved among many superantigens, including those from Staphylococcus aureus . SpeA and staphylococcal enterotoxins lacking the disulfide bond are biologically inactive. Thus, the discovery of the enzyme that catalyzes the disulfide bond in SpeA is important to understanding the biochemistry of SpeA production and presents a target for mitigating the virulence of S. pyogenes .

2001 ◽  
Vol 183 (4) ◽  
pp. 1312-1319 ◽  
Author(s):  
Anthony P. Pugsley ◽  
Nicolas Bayan ◽  
Nathalie Sauvonnet

ABSTRACT When expressed in Escherichia coli, the 15Klebsiella oxytoca pul genes that encode the so-called Pul secreton or type II secretion machinery promote pullulanase secretion and the assembly of one of the secreton components, PulG, into pili. Besides these pul genes, efficient pullulanase secretion also requires the host dsbA gene, encoding a periplasmic disulfide oxidoreductase, independently of disulfide bond formation in pullulanase itself. Two secreton components, the secretin pilot protein PulS and the minor pseudopilin PulK, were each shown to posses an intramolecular disulfide bond whose formation was catalyzed by DsbA. PulS was apparently destabilized by the absence of its disulfide bond, whereas PulK stability was not dramatically affected either by adsbA mutation or by the removal of one of its cysteines. The pullulanase secretion defect in a dsbA mutant was rectified by overproduction of PulK, indicating reduced disulfide bond formation in PulK as the major cause of the secretion defect under the conditions tested (in which PulS is probably present in considerable excess of requirements). PulG pilus formation was independent of DsbA, probably because PulK is not needed for piliation.


2002 ◽  
Vol 70 (5) ◽  
pp. 2700-2703 ◽  
Author(s):  
Jere W. McBride ◽  
Lucy M. Ndip ◽  
Vsevolod L. Popov ◽  
David H. Walker

ABSTRACT Novel homologous DsbA-like disulfide bond formation (Dsb) proteins of Ehrlichia chaffeensis and Ehrlichia canis were identified which restored DsbA activity in complemented Escherichia coli dsbA mutants. Recombinant Ehrlichia Dsb (eDsb) proteins were recognized by sera from E. canis-infected dogs but not from E. chaffeensis-infected patients. The eDsb proteins were observed primarily in the periplasm of E. chaffeensis and E. canis.


Biochemistry ◽  
2000 ◽  
Vol 39 (16) ◽  
pp. 4649-4657 ◽  
Author(s):  
Hee Cheol Cho ◽  
Robert G. Tsushima ◽  
The-Tin T. Nguyen ◽  
H. Robert Guy ◽  
Peter H. Backx

2001 ◽  
Vol 21 (18) ◽  
pp. 6139-6150 ◽  
Author(s):  
Shusuke Kuge ◽  
Minetaro Arita ◽  
Asako Murayama ◽  
Kazuhiro Maeta ◽  
Shingo Izawa ◽  
...  

ABSTRACT Yap1p, a crucial transcription factor in the oxidative stress response of Saccharomyces cerevisiae, is transported in and out of the nucleus under nonstress conditions. The nuclear export step is specifically inhibited by H2O2 or the thiol oxidant diamide, resulting in Yap1p nuclear accumulation and induction of transcription of its target genes. Here we provide evidence for sensing of H2O2 and diamide mediated by disulfide bond formation in the C-terminal cysteine-rich region (c-CRD), which contains 3 conserved cysteines and the nuclear export signal (NES). The H2O2 or diamide-induced oxidation of the c-CRD in vivo correlates with induced Yap1p nuclear localization. Both were initiated within 1 min of application of oxidative stress, before the intracellular redox status of thioredoxin and glutathione was affected. The cysteine residues in the middle region of Yap1p (n-CRD) are required for prolonged nuclear localization of Yap1p in response to H2O2 and are thus also required for maximum transcriptional activity. Using mass spectrometry analysis, the H2O2-induced oxidation of the c-CRD in vitro was detected as an intramolecular disulfide linkage between the first (Cys598) and second (Cys620) cysteine residues; this linkage could be reduced by thioredoxin. In contrast, diamide induced each pair of disulfide linkage in the c-CRD, but in this case the cysteine residues in the n-CRD appeared to be dispensable for the response. Our data provide evidence for molecular mechanisms of redox signal sensing through the thiol-disulfide redox cycle coupled with the thioredoxin system in the Yap1p NES.


Sign in / Sign up

Export Citation Format

Share Document