scholarly journals Characterization of abn2 (yxiA), Encoding a Bacillus subtilis GH43 Arabinanase, Abn2, and Its Role in Arabino-Polysaccharide Degradation

2008 ◽  
Vol 190 (12) ◽  
pp. 4272-4280 ◽  
Author(s):  
José Manuel Inácio ◽  
Isabel de Sá-Nogueira

ABSTRACT The extracellular depolymerization of arabinopolysaccharides by microorganisms is accomplished by arabinanases, xylanases, and galactanases. Here, we characterize a novel endo-α-1,5-l-arabinanase (EC 3.2.1.99) from Bacillus subtilis, encoded by the yxiA gene (herein renamed abn2) that contributes to arabinan degradation. Functional studies by mutational analysis showed that Abn2, together with previously characterized AbnA, is responsible for the majority of the extracellular arabinan activity in B. subtilis. Abn2 was overproduced in Escherichia coli, purified from the periplasmic fraction, and characterized with respect to substrate specificity and biochemical and physical properties. With linear-α-1,5-l-arabinan as the preferred substrate, the enzyme exhibited an apparent Km of 2.0 mg ml−1 and V max of 0.25 mmol min−1 mg−1 at pH 7.0 and 50°C. RNA studies revealed the monocistronic nature of abn2. Two potential transcriptional start sites were identified by primer extension analysis, and both a σA-dependent and a σH-dependent promoter were located. Transcriptional fusion studies revealed that the expression of abn2 is stimulated by arabinan and pectin and repressed by glucose; however, arabinose is not the natural inducer. Additionally, trans-acting factors and cis elements involved in transcription were investigated. Abn2 displayed a control mechanism at a level of gene expression different from that observed with AbnA. These distinct regulatory mechanisms exhibited by two members of extracellular glycoside hydrolase family 43 (GH43) suggest an adaptative strategy of B. subtilis for optimal degradation of arabinopolysaccharides.

2021 ◽  
Author(s):  
Gregory S Bulmer ◽  
Fang Wei Yuen ◽  
Naimah Begum ◽  
Bethan S Jones ◽  
Sabine S Flitsch ◽  
...  

β-D-Galactofuranose (Galf) and its polysaccharides are found in bacteria, fungi and protozoa but do not occur in mammalian tissues, and thus represent a specific target for anti-pathogenic drugs. Understanding the enzymatic degradation of these polysaccharides is therefore of great interest, but the identity of fungal enzymes with exclusively galactofuranosidase activity has so far remained elusive. Here we describe the identification and characterization of a galactofuranosidase from the industrially important fungus Aspergillus niger. Phylogenetic analysis of glycoside hydrolase family 43 subfamily 34 (GH43_34) members revealed the occurrence of three distinct clusters and, by comparison with specificities of characterized bacterial members, suggested a basis for prediction of enzyme specificity. Using this rationale, in tandem with molecular docking, we identified a putative β-D-galactofuranosidase from A. niger which was recombinantly expressed in Escherichia coli. The Galf-specific hydrolase, encoded by xynD demonstrates maximum activity at pH 5, 25 °C towards 4-Nitrophenyl-β-galactofuranoside (pNP-βGalf), with a Km of 17.9 ± 1.9 mM and Vmax of 70.6 ± 5.3 μmol min-1. The characterization of this first fungal GH43 galactofuranosidase offers further molecular insight into the degradation of Galf-containing structures and may inform clinical treatments against fungal pathogens.


2016 ◽  
Vol 72 (7) ◽  
pp. 860-870 ◽  
Author(s):  
Mikael Gudmundsson ◽  
Henrik Hansson ◽  
Saeid Karkehabadi ◽  
Anna Larsson ◽  
Ingeborg Stals ◽  
...  

The filamentous fungusHypocrea jecorinaproduces a number of cellulases and hemicellulases that act in a concerted fashion on biomass and degrade it into monomeric or oligomeric sugars. β-Glucosidases are involved in the last step of the degradation of cellulosic biomass and hydrolyse the β-glycosidic linkage between two adjacent molecules in dimers and oligomers of glucose. In this study, it is shown that substituting the β-glucosidase fromH. jecorina(HjCel3A) with the β-glucosidase Cel3A from the thermophilic fungusRasamsonia emersonii(ReCel3A) in enzyme mixtures results in increased efficiency in the saccharification of lignocellulosic materials. Biochemical characterization ofReCel3A, heterologously produced inH. jecorina, reveals a preference for disaccharide substrates over longer gluco-oligosaccharides. Crystallographic studies ofReCel3A revealed a highly N-glycosylated three-domain dimeric protein, as has been observed previously for glycoside hydrolase family 3 β-glucosidases. The increased thermal stability and saccharification yield and the superior biochemical characteristics ofReCel3A compared withHjCel3A and mixtures containingHjCel3A makeReCel3A an excellent candidate for addition to enzyme mixtures designed to operate at higher temperatures.


Amylase ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 13-22
Author(s):  
Gang Xiang ◽  
Piet L. Buwalda ◽  
Marc J.E.C van der Maarel ◽  
Hans Leemhuis

Abstract The 4,6-α-glucanotransferases of the glycoside hydrolase family 70 can convert starch into isomaltooligosaccharides (IMOs). However, no thermostable 4,6-α-glucanotransferases have been reported to date, limiting their applicability in the starch conversion industry. Here we report the identification and characterization of a thermostable 4,6-α-glucanotransferase from Bacillus coagulans DSM 1. The gene was cloned and the recombinant protein, called BcGtfC, was produced in Escherichia coli. BcGtfC is stable up to 66 °C in the presence of substrate. It converts debranched starch into an IMO product with a high percentage of α-1,6-glycosidic linkages and a relatively high molecular weight compared to commercially available IMOs. Importantly, the product is only partly and very slowly digested by rat intestine powder, suggesting that the IMO will provide a low glycaemic response in vivo when applied as food ingredient. Thus, BcGtfC is a thermostable 4,6-α-glucanotransferase suitable for the industrial production of slowly digestible IMOs from starch.


2010 ◽  
Vol 9 (11) ◽  
pp. 1650-1660 ◽  
Author(s):  
Encarnación Dueñas-Santero ◽  
Ana Belén Martín-Cuadrado ◽  
Thierry Fontaine ◽  
Jean-Paul Latgé ◽  
Francisco del Rey ◽  
...  

ABSTRACT In yeast, enzymes with β-glucanase activity are thought to be necessary in morphogenetic events that require controlled hydrolysis of the cell wall. Comparison of the sequence of the Saccharomyces cerevisiae exo-β(1,3)-glucanase Exg1 with the Schizosaccharomyces pombe genome allowed the identification of three genes that were named exg1 + (locus SPBC1105.05), exg2 + (SPAC12B10.11), and exg3 + (SPBC2D10.05). The three proteins have different localizations: Exg1 is secreted to the periplasmic space, Exg2 is a membrane protein, and Exg3 is a cytoplasmic protein. Characterization of the biochemical activity of the proteins indicated that Exg1 and Exg3 are active only against β(1,6)-glucans while no activity was detected for Exg2. Interestingly, Exg1 cleaves the glucans with an endohydrolytic mode of action. exg1 + showed periodic expression during the cell cycle, with a maximum coinciding with the septation process, and its expression was dependent on the transcription factor Sep1. The Exg1 protein localizes to the septum region in a pattern that was different from that of the endo-β(1,3)-glucanase Eng1. Overexpression of Exg2 resulted in an increase in cell wall material at the poles and in the septum, but the putative catalytic activity of the protein was not required for this effect.


2007 ◽  
Vol 73 (9) ◽  
pp. 3109-3112 ◽  
Author(s):  
Tatsuji Sakamoto ◽  
Yuya Taniguchi ◽  
Shiho Suzuki ◽  
Hideshi Ihara ◽  
Haruhiko Kawasaki

ABSTRACT A type II arabinogalactan-degrading enzyme (FoGal1) was purified from Fusarium oxysporum 12S, and the corresponding cDNA was isolated. FoGal1 had high similarity to enzymes of glycoside hydrolase family 5. Treatment of larch wood arabinogalactan with the recombinant enzyme indicated that FoGal1 is a β-1,6-galactanase that preferentially debranches β-1,6-galactobiose from the substrate.


Sign in / Sign up

Export Citation Format

Share Document