scholarly journals Molecular Evolution of the H-NS Protein: Interaction with Hha-Like Proteins Is Restricted to Enterobacteriaceae

2006 ◽  
Vol 189 (1) ◽  
pp. 265-268 ◽  
Author(s):  
Cristina Madrid ◽  
Jesús García ◽  
Miquel Pons ◽  
Antonio Juárez

ABSTRACT We show here that chromosomal hha-like genes are restricted to the Enterobacteriaceae. The H-NS N-terminal domain of members of this family includes an unaltered seven-amino-acid sequence located between helixes 1 and 2, termed the Hha signature, that contains key residues for H-NS-Hha interaction.

1993 ◽  
Vol 105 (4) ◽  
pp. 1137-1142 ◽  
Author(s):  
C.W. Morgans ◽  
R.R. Kopito

The 89 kDa NH2-terminal domain of erythrocyte ankyrin is composed almost entirely of 22 tandem repeats of a 33 amino acid sequence and constitutes the binding site for the cytoplasmic NH2-terminal domain of the erythrocyte anion exchanger, AE1. We have developed an assay to evaluate the in vivo interaction between a fragment of ankyrin corresponding to this domain (ANK90) and two non-erythroid anion exchangers, AE2 and AE3, that share considerable structural homology with AE1. Association was assessed by co-immunoprecipitation of ANK90-anion exchanger complexes from detergent extracts of cells cotransfected with plasmids encoding the ankyrin fragment and the anion exchanger or mutants thereof. ANK90 was co-immunoprecipitated with AE1 but not with an AE1 deletion mutant lacking the cytoplasmic NH2-terminal domain. Using this assay, we show that the brain anion exchanger AE3, but not the closely related homologue, AE2, is capable of binding to ankyrin.


1992 ◽  
Vol 40 (3) ◽  
pp. 313 ◽  
Author(s):  
PR Baverstock ◽  
L Christidis ◽  
M Krieg ◽  
J Birrell

A number of lines of evidence suggest that the rate of molecular evolution in birds is slower than in other vertebrates. This hypothesis was tested by measuring the extent of amino-acid sequence divergence in albumin among species of parrots by means of microcomplement fixation. This group was chosen because its modern distribution is strongly suggestive of a Gondwanan origin. The results show that the intercontinental albumin distances are well below those expected for a Gondwanan group. These data are in accord with the hypothesis that birds have a slower rate of molecular evolution, although other explanations are possible.


1998 ◽  
Vol 60 (6) ◽  
pp. 769-771 ◽  
Author(s):  
Hiroyuki ABE ◽  
Yumi KAWAKITA ◽  
Toshikazu MIYASHIGE ◽  
Masami MORIMATSU ◽  
Masayuki SAITO

2000 ◽  
Vol 11 (2) ◽  
pp. 270-282
Author(s):  
EDGAR OTTO ◽  
ANDREAS KISPERT ◽  
SILVIA SCHÄTZLE ◽  
BIRGIT LESCHER ◽  
CORNELIA RENSING ◽  
...  

Juvenile nephronophthisis, an autosomal recessive cystic kidney disease, is the primary genetic cause for chronic renal failure in children. The gene (NPHP 1) for nephronophthisis type 1 has recently been identified. Its gene product, nephrocystin, is a novel protein of unknown function, which contains a src-homology 3 domain. To study tissue expression and analyze amino acid sequence conservation of nephrocystin, the full-length murine Nphp 1 cDNA sequence was obtained and Northern and in situ hybridization analyses were performed for extensive expression studies. The results demonstrate widespread but relatively weak NPHP 1 expression in the human adult. In the adult mouse there is strong expression in testis. This expression occurs specifically in cell stages of the first meiotic division and thereafter. In situ hybridization to whole mouse embryos demonstrated widespread and uniform expression at all developmental stages. Amino acid sequence conservation studies in human, mouse, and Caenorhabditis elegans show that in nephrocystin the src-homology 3 domain is embedded in a novel context of other putative domains of protein-protein interaction, such as coiled-coil and E-rich domains. It is concluded that for multiple putative protein-protein interaction domains of nephrocystin, sequence conservation dates back at least to Caenorhabditis elegans. The previously described discrepancy between widespread tissue expression and the restriction of symptoms to the kidney has now been confirmed by an in-depth expression study.


2002 ◽  
Vol 68 (9) ◽  
pp. 4283-4291 ◽  
Author(s):  
S. Kralj ◽  
G. H. van Geel-Schutten ◽  
H. Rahaoui ◽  
R. J. Leer ◽  
E. J. Faber ◽  
...  

ABSTRACT Lactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the α-(1→4) glucosidic type. The glucan also contains α-(1→6)-linked glucosyl units and 4,6-disubstituted α-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L. reuteri strain 121 glucosyltransferase gene (gtfA) was isolated. The gtfA open reading frame (ORF) was 5,343 bp, and it encodes a protein of 1,781 amino acids with a deduced M r of 198,637. The deduced amino acid sequence of GTFA revealed clear similarities with other glucosyltransferases. GTFA has a relatively large variable N-terminal domain (702 amino acids) with five unique repeats and a relatively short C-terminal domain (267 amino acids). The gtfA gene was expressed in Escherichia coli, yielding an active GTFA enzyme. With respect to binding type and size distribution, the recombinant GTFA enzyme and the L. reuteri strain 121 culture supernatants synthesized identical glucan polymers. Furthermore, the deduced amino acid sequence of the gtfA ORF and the N-terminal amino acid sequence of the glucosyltransferase isolated from culture supernatants of L. reuteri strain 121 were the same. GTFA is thus responsible for the synthesis of the unique glucan polymer in L. reuteri strain 121. This is the first report on the molecular characterization of a glucosyltransferase from a Lactobacillus strain.


FEBS Letters ◽  
1983 ◽  
Vol 154 (1) ◽  
pp. 166-170 ◽  
Author(s):  
Dorothy J. Ball ◽  
Clive A. Slaughter ◽  
Preston Hensley ◽  
William T. Garrard

Sign in / Sign up

Export Citation Format

Share Document