glucose transporter glut4
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 23)

H-INDEX

51
(FIVE YEARS 4)

Physiology ◽  
2021 ◽  
Author(s):  
David H. Wasserman

Research conducted over the last 50 years has provided insight into the mechanisms by which insulin stimulates glucose transport across the skeletal muscle cell membrane. Transport alone, however, does not result in net glucose uptake as freeglucose equilibrates across the cell membrane and is not metabolized. Glucose uptake requires that glucose is phosphorylated by hexokinases. Phosphorylated glucosecannot leave the cell and is the substrate for metabolism. It is indisputable that glucose phosphorylation is essential for glucose uptake. Major advances have been made in defining the regulation of the insulin-stimulated glucose transporter, GLUT4, in skeletalmuscle. By contrast, the insulin-regulated hexokinase, hexokinase II parallels RobertFrost's Road Not Taken. Here the case is made that an understanding of glucosephosphorylation by hexokinase II is necessary to define the regulation of skeletal muscle glucose uptake in health and insulin resistance. Results of studies from different physiological disciplines that have elegantly described how hexokinase II can beregulated are summarized to provide a framework for potential application to skeletal muscle. Mechanisms by which hexokinase II is regulated in skeletal muscle await rigorous examination.


2021 ◽  
Author(s):  
Christian de Wendt ◽  
Lena Espelage ◽  
Samaneh Eickelschulte ◽  
Christian Springer ◽  
Laura Toska ◽  
...  

The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4, both substrates for the AMP-activated protein kinase AMPK, play important roles in exercise metabolism and contraction-dependent translocation of the glucose transporter GLUT4 in skeletal muscle. However, the specific contribution of each RabGAP in contraction signaling is mostly unknown. In this study, we investigated the cooperative AMPK/RabGAP signaling axis in the metabolic response to exercise/contraction using a novel mouse model deficient in active skeletal muscle AMPK, combined with knockout of either <i>Tbc1d1</i>, <i>Tbc1d4</i> or both RabGAPs. AMPK-deficiency in muscle reduced treadmill exercise performance. Additional deletion of <i>Tbc1d1</i> but not <i>Tbc1d4 </i>resulted in further decrease in exercise capacity. In oxidative <i>Soleus</i> muscle, AMPK deficiency reduced contraction-mediated glucose uptake and deletion of each or both RabGAPs had no further effect. In contrast, in glycolytic <i>EDL</i> muscle, AMPK deficiency reduced contraction-stimulated glucose uptake and deletion of <i>Tbc1d1 </i>but not <i>Tbc1d4 </i>led to a further decrease. Importantly, skeletal muscle deficient in AMPK and both RabGAPs still exhibited residual contraction-mediated glucose uptake, which was completely abolished by inhibition of the GTPase <i>Rac1</i>. Our results demonstrate a novel mechanistic link between glucose transport and <a></a><a>the GTPase signaling framework in skeletal muscle in response to contraction.</a>


2021 ◽  
Author(s):  
Christian de Wendt ◽  
Lena Espelage ◽  
Samaneh Eickelschulte ◽  
Christian Springer ◽  
Laura Toska ◽  
...  

The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4, both substrates for the AMP-activated protein kinase AMPK, play important roles in exercise metabolism and contraction-dependent translocation of the glucose transporter GLUT4 in skeletal muscle. However, the specific contribution of each RabGAP in contraction signaling is mostly unknown. In this study, we investigated the cooperative AMPK/RabGAP signaling axis in the metabolic response to exercise/contraction using a novel mouse model deficient in active skeletal muscle AMPK, combined with knockout of either <i>Tbc1d1</i>, <i>Tbc1d4</i> or both RabGAPs. AMPK-deficiency in muscle reduced treadmill exercise performance. Additional deletion of <i>Tbc1d1</i> but not <i>Tbc1d4 </i>resulted in further decrease in exercise capacity. In oxidative <i>Soleus</i> muscle, AMPK deficiency reduced contraction-mediated glucose uptake and deletion of each or both RabGAPs had no further effect. In contrast, in glycolytic <i>EDL</i> muscle, AMPK deficiency reduced contraction-stimulated glucose uptake and deletion of <i>Tbc1d1 </i>but not <i>Tbc1d4 </i>led to a further decrease. Importantly, skeletal muscle deficient in AMPK and both RabGAPs still exhibited residual contraction-mediated glucose uptake, which was completely abolished by inhibition of the GTPase <i>Rac1</i>. Our results demonstrate a novel mechanistic link between glucose transport and <a></a><a>the GTPase signaling framework in skeletal muscle in response to contraction.</a>


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4232
Author(s):  
Chien-Hui Wu ◽  
Chung-Hsiung Huang ◽  
Ming-Chuan Chung ◽  
Shun-Hsien Chang ◽  
Guo-Jane Tsai

Although the hypoglycemic potential of brewer’s yeast extract has been reported, there is limited information pertaining to the hypoglycemic ingredients of Saccharomyces pastorianus extract and their mechanisms of action available. This study aimed to investigate the in vivo and in vitro hypoglycemic effect of S. pastorianus extract and to elucidate its molecular mechanisms. S. pastorianus extract was mainly composed of proteins followed by carbohydrates. In diabetic rats, oral administration of S. pastorianus extract significantly reduced the levels of plasma glucose and enhanced the activity of hepatic glucose-6-phosphatase dehydrogenase. Treatment with S. pastorianus extract increased the localization of type 4 glucose transporter (GLUT4), PTP, and insulin receptor at 3T3-L1 cell membranes and raised the levels of P38 MAPK, PI3K, and AKT in the cytosol. In agreement with these results, pretreatment of 3T3-L1 cells with inhibitors of PTP, PI3K, Akt/PKB, and p38 MAPK inhibited glucose uptake induced by application of S. pastorianus extract. Most importantly, a 54 kDa protein with hypoglycemic activity was identified and suggested as the major ingredient contributing to the hypoglycemic activity of S. pastorianus extract. In summary, these results clearly confirm the hypoglycemic activity of S. pastorianus extract and provide critical insights into the underlying molecular mechanisms.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Youdi Wang ◽  
Xue Wu ◽  
Mengya Geng ◽  
Jiamin Ding ◽  
Kangjia Lv ◽  
...  

Diabetic nephropathy (DN) is one of the most lethal complications of diabetes mellitus with chronic inflammation. We have examined the role of the inflammatory chemokine CCL24 in DN. We observed that serum levels of CCL24 were significantly elevated in patients with DN. Not only that, the expression of CCL24 was significantly increased in the kidneys of DN mice. The kidney of DN mice showed increased renal fibrosis and inflammation. We characterized an in vitro podocyte cell model with high glucose. Western blot analysis showed that expression of CCL24 was significantly increased under high-glucose conditions. Stimulation with high glucose (35 mmol/L) resulted in an increase in CCL24 expression in the first 48 hours but changed little after 72 hours. Moreover, with glucose stimulation, the level of podocyte fibrosis gradually increased, the expression of the proinflammatory cytokine IL-1β was upregulated, and the expression of the glucose transporter GLUT4, involved in the insulin signal regulation pathway, also increased. It is suggested that CCL24 is involved in the pathogenesis of DN. In order to study the specific role of CCL24 in this process, we used the CRISPR-Cas9 technique to knock out CCL24 expression in podocytes. Compared with the control group, the podocyte inflammatory response induced by high glucose after CCL24 knockout was significantly increased. These results suggest that CCL24 plays a role in the development of early DN by exerting an anti-inflammatory effect, at least, in podocytes.


2021 ◽  
Author(s):  
Anna M Koester ◽  
Kamilla M Laidlaw ◽  
Silke Morris ◽  
Marie F.A. Cutiongco ◽  
Laura Stirrat ◽  
...  

Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localisation of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11485
Author(s):  
Peter R.T. Bowman ◽  
Godfrey L. Smith ◽  
Gwyn W. Gould

The global incidence, associated mortality rates and economic burden of diabetes are now such that it is considered one of the most pressing worldwide public health challenges. Considerable research is now devoted to better understanding the mechanisms underlying the onset and progression of this disease, with an ultimate aim of improving the array of available preventive and therapeutic interventions. One area of particular unmet clinical need is the significantly elevated rate of cardiomyopathy in diabetic patients, which in part contributes to cardiovascular disease being the primary cause of premature death in this population. This review will first consider the role of metabolism and more specifically the insulin sensitive glucose transporter GLUT4 in diabetic cardiac disease, before addressing how we may use exercise to intervene in order to beneficially impact key functional clinical outcomes.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Karen Cristina Rego Gregorio ◽  
Caroline Pancera Laurindo ◽  
Ubiratan Fabres Machado

Impaired circulating estrogen levels have been related to impaired glycemic homeostasis and diabetes mellitus (DM), both in females and males. However, for the last twenty years, the relationship between estrogen, glycemic homeostasis and the mechanisms involved has remained unclear. The characterization of estrogen receptors 1 and 2 (ESR1 and ESR2) and of insulin-sensitive glucose transporter type 4 (GLUT4) finally offered a great opportunity to shed some light on estrogen regulation of glycemic homeostasis. In this manuscript, we review the relationship between estrogen and DM, focusing on glycemic homeostasis, estrogen, ESR1/ESR2 and GLUT4. We review glycemic homeostasis and GLUT4 expression (muscle and adipose tissues) in Esr1−/− and Esr2−/− transgenic mice. We specifically address estradiol-induced and ESR1/ESR2-mediated regulation of the solute carrier family 2 member 4 (Slc2a4) gene, examining ESR1/ESR2-mediated genomic mechanisms that regulate Slc2a4 transcription, especially those occurring in cooperation with other transcription factors. In addition, we address the estradiol-induced translocation of ESR1 and GLUT4 to the plasma membrane. Studies make it clear that ESR1-mediated effects are beneficial, whereas ESR2-mediated effects are detrimental to glycemic homeostasis. Thus, imbalance of the ESR1/ESR2 ratio may have important consequences in metabolism, highlighting that ESR2 hyperactivity assumes a diabetogenic role.


2020 ◽  
Vol 23 (4) ◽  
pp. 368-373
Author(s):  
Igor Vladimirovich Dobrokhotov ◽  
Oksana M. Veselova ◽  
Roman O. Lyubimov

The growing incidence of diabetes mellitus requires the optimizing of existing approaches and searching for new ones to treat this disease. It is necessary to study the features of other regulators that play a significant role in the process of glucose uptake by cells, along with the insulin resistance caused by defects in the molecular mechanisms of insulin action. Galanine, a neuropeptide of 29 (30 in humans) amino acids, is involved in a large number of different vital functions, including regulating energy metabolism in the cell. Galanine interacts with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and transmitting signals through several transduction pathways, including cAMP/PKA inhibition (GAL1, GAL3) and phospholipase C (GAL2) stimulation. Agonists and antagonists of galanine receptor subtype GalR1-3 can be used as intended therapeutic targets to treat various human diseases. We accumulated more data that prove the importance of the galanine peptide regulator in the etiology of impaired glucose uptake by insulin-dependent tissues. The review considers such effects of galanine, as inhibition of insulin synthesis, activation of expression and translocation to the plasma cell membrane of the glucose transporter GLUT4, increase of PPAR-g level, and decrease in duodenal hyper-contractility. These data confirm the importance of research to find an effective antidiabetic drug among the synthesized analogs of galanine.


Author(s):  
Katarina Hadova ◽  
Lucia Mesarosova ◽  
Eva Kralova ◽  
Gabriel Doka ◽  
Peter Krenek ◽  
...  

Tyrosine kinases inhibitors (TKIs) may alter glycaemia and may be cardiotoxic with importance in diabetic heart. We investigated the effect of multi-TKI crizotinib after short-term administration on metabolic modulators of the heart of diabetic rats. Experimental diabetes mellitus (DM) was induced by streptozotocin (STZ; 80 mg/kg, i.p.), controls received vehicle (CON). Three days after STZ, crizotinib (STZ+CRI; 25 mg/kg/day p.o.) or vehicle was administered for 7 days. Blood glucose, C-peptide and glucagon were assessed in plasma samples. Receptor tyrosine kinases (RTKs), cardiac glucose transporters and PPARs were determined in rat left ventricle by RT-qPCR method. Crizotinib moderately reduced blood glucose (by 25%, P<0.05) when compared to STZ rats. The drug did not affect levels of C-peptide, an indicator of insulin secretion, suggesting altered tissue glucose utilization. Crizotinib had no impact on cardiac RTKs. However, an mRNA downregulation of insulin-dependent glucose transporter Glut4 in hearts of STZ rats was attenuated after crizotinib treatment. Moreover, crizotinib normalized Ppard and reduced Pparg mRNA expression in diabetic hearts. Crizotinib decreased blood glucose independently of insulin and glucagon. This could be related to changes in regulators of cardiac metabolism such as GLUT4 and PPARs.


Sign in / Sign up

Export Citation Format

Share Document