scholarly journals Conjugative Transfer of the Integrative and Conjugative Element ICEBs1 from Bacillus subtilis Likely Initiates at the Donor Cell Pole

2009 ◽  
Vol 192 (1) ◽  
pp. 23-25 ◽  
Author(s):  
Elisabeth Grohmann
2009 ◽  
Vol 192 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Melanie B. Berkmen ◽  
Catherine A. Lee ◽  
Emma-Kate Loveday ◽  
Alan D. Grossman

ABSTRACT ICEBs1 is an integrative and conjugative element found in the chromosome of Bacillus subtilis. ICEBs1 encodes functions needed for its excision and transfer to recipient cells. We found that the ICEBs1 gene conE (formerly yddE) is required for conjugation and that conjugative transfer of ICEBs1 requires a conserved ATPase motif of ConE. ConE belongs to the HerA/FtsK superfamily of ATPases, which includes the well-characterized proteins FtsK, SpoIIIE, VirB4, and VirD4. We found that a ConE-GFP (green fluorescent protein) fusion associated with the membrane predominantly at the cell poles in ICEBs1 donor cells. At least one ICEBs1 product likely interacts with ConE to target it to the membrane and cell poles, as ConE-GFP was dispersed throughout the cytoplasm in a strain lacking ICEBs1. We also visualized the subcellular location of ICEBs1. When integrated in the chromosome, ICEBs1 was located near midcell along the length of the cell, a position characteristic of that chromosomal region. Following excision, ICEBs1 was more frequently found near a cell pole. Excision of ICEBs1 also caused altered positioning of at least one component of the replisome. Taken together, our findings indicate that ConE is a critical component of the ICEBs1 conjugation machinery, that conjugative transfer of ICEBs1 from B. subtilis likely initiates at a donor cell pole, and that ICEBs1 affects the subcellular position of the replisome.


2013 ◽  
Vol 69 (2) ◽  
pp. 343-348 ◽  
Author(s):  
M. A. Seier-Petersen ◽  
A. Jasni ◽  
F. M. Aarestrup ◽  
H. Vigre ◽  
P. Mullany ◽  
...  

2011 ◽  
Vol 193 (7) ◽  
pp. 1633-1642 ◽  
Author(s):  
M. Kaufenstein ◽  
M. van der Laan ◽  
P. L. Graumann

2020 ◽  
Author(s):  
Marie Burghard-Schrod ◽  
Alexandra Kilb ◽  
Kai Krämer ◽  
Peter L. Graumann

AbstractIn competent gram-negative and gram-positive bacteria, double stranded DNA is taken up through the outer cell membrane and/or the cell wall, and is bound by ComEA, which in Bacillus subtilis is a membrane protein. DNA is converted to single stranded DNA, and transported through the cell membrane via ComEC. We show that in Bacillus subtilis, the C-terminus of ComEC, thought to act as a nuclease, is not only important for DNA uptake, as judged from a loss of transformability, but also for the localization of ComEC to the cell pole and its mobility within the cell membrane. Using single molecule tracking, we show that only 13% of ComEC molecules are statically localised at the pole, while 87% move throughout the cell membrane. These experiments suggest that recruitment of ComEC to the cell pole is mediated by a diffusion/capture mechanism. Mutation of a conserved aspartate residue in the C-terminus, likely affecting metal binding, strongly impairs transformation efficiency, suggesting that this periplasmic domain of ComEC could indeed serve a catalytic function as nuclease. By tracking fluorescently labeled DNA, we show that taken up DNA has a similar mobility within the periplasm as ComEA, suggesting that most taken up molecules are bound to ComEA. We show that DNA can be highly mobile within the periplasm, indicating that this subcellular space can act as reservoir for taken up DNA, before its entry into the cytosol.ImportanceBacteria can take up DNA from the environment and incorporate it into their chromosome in case similarity to the genome exists. This process of “natural competence” can result in the uptake of novel genetic information leading to horizontal gene transfer. We show that fluorescently labelled DNA moves within the periplasm of competent Bacillus subtilis cells with similar dynamics as DNA receptor ComEA, and thus takes a detour to get stored before uptake across the cell membrane into the cytosol by DNA permease ComEC. The latter assembles at a single cell pole, likely by a diffusion-capture mechanism, and requires its large C-terminus, including a conserved residue thought to confer nuclease function, for proper localization, function and mobility within the membrane.


2001 ◽  
Vol 69 (5) ◽  
pp. 3483-3487 ◽  
Author(s):  
Sigrid Brynestad ◽  
Mahfuzur R. Sarker ◽  
Bruce A. McClane ◽  
Per Einar Granum ◽  
Julian I. Rood

ABSTRACT Clostridium perfringens enterotoxin is the major virulence factor involved in the pathogenesis of C. perfringens type A food poisoning and several non-food-borne human gastrointestinal illnesses. The enterotoxin gene,cpe, is located on the chromosome of food-poisoning isolates but is found on a large plasmid in non-food-borne gastrointestinal disease isolates and in veterinary isolates. To evaluate whether the cpe plasmid encodes its own conjugative transfer, a C. perfringens strain carrying pMRS4969, a plasmid in which a 0.4-kb segment internal to thecpe gene had been replaced by the chloramphenicol resistance gene catP, was used as a donor in matings with several cpe-negative C. perfringensisolates. Chloramphenicol resistance was transferred at frequencies ranging from 2.0 × 10−2 to 4.6 × 10−4 transconjugants per donor cell. The transconjugants were characterized by PCR, pulsed-field gel electrophoresis, and Southern hybridization analyses. The results demonstrated that the entire pMRS4969 plasmid had been transferred to the recipient strain. Plasmid transfer required cell-to-cell contact and was DNase resistant, indicating that transfer occurred by a conjugation mechanism. In addition, several fragments of the prototype C. perfringens tetracycline resistance plasmid, pCW3, hybridized with pMRS4969, suggesting that pCW3 shares some similarity to pMRS4969. The clinical significance of these findings is that if conjugative transfer of the cpe plasmid occurred in vivo, it would have the potential to convertcpe-negative C. perfringens strains in normal intestinal flora into strains capable of causing gastrointestinal disease.


2005 ◽  
Vol 187 (3) ◽  
pp. 930-939 ◽  
Author(s):  
Kamila Belhocine ◽  
Karen K. Yam ◽  
Benoit Cousineau

ABSTRACT The Ll.LtrB group II intron from the low-G+C gram-positive bacterium Lactococcus lactis was the first bacterial group II intron shown to splice and mobilize in vivo. This retroelement interrupts the relaxase gene (ltrB) of three L. lactis conjugative elements: plasmids pRS01 and pAH90 and the chromosomal sex factor. Conjugative transfer of a plasmid harboring a segment of the pRS01 conjugative plasmid including the Ll.LtrB intron allows dissemination of Ll.LtrB among L. lactis strains and lateral transfer of this retroelement from L. lactis to Enterococcus faecalis. Here we report the dissemination of the Ll.LtrB group II intron among L. lactis strains following conjugative transfer of the native chromosomally embedded L. lactis sex factor. We demonstrated that Ll.LtrB dissemination is highly variable and often more efficient from this integrative and conjugative element than from an engineered conjugative plasmid. Cotransfer among L. lactis strains of both Ll.LtrB-containing elements, the conjugative plasmid and the sex factor, was detected and shown to be synergistic. Moreover, following their concurrent transfer, both mobilizable elements supported the spread of their respective copies of the Ll.LtrB intron. Our findings explain the unusually high efficiency of Ll.LtrB mobility observed following conjugation of intron-containing plasmids.


2005 ◽  
Vol 41 (5) ◽  
pp. 479-483 ◽  
Author(s):  
E. U. Poluektova ◽  
E. A. Fedorina ◽  
A. A. Prozorov

Sign in / Sign up

Export Citation Format

Share Document