scholarly journals Archaeal Transcription: Function of an Alternative Transcription Factor B from Pyrococcus furiosus

2007 ◽  
Vol 190 (1) ◽  
pp. 157-167 ◽  
Author(s):  
Michael Micorescu ◽  
Sebastian Grünberg ◽  
Andreas Franke ◽  
Patrick Cramer ◽  
Michael Thomm ◽  
...  

ABSTRACT The genome of the hyperthermophile archaeon Pyrococcus furiosus encodes two transcription factor B (TFB) paralogs, one of which (TFB1) was previously characterized in transcription initiation. The second TFB (TFB2) is unusual in that it lacks recognizable homology to the archaeal TFB/eukaryotic TFIIB B-finger motif. TFB2 functions poorly in promoter-dependent transcription initiation, but photochemical cross-linking experiments indicated that the orientation and occupancy of transcription complexes formed with TFB2 at the strong gdh promoter are similar to the orientation and occupancy of transcription complexes formed with TFB1. Initiation complexes formed by TFB2 display a promoter opening defect that can be bypassed with a preformed transcription bubble, suggesting a mechanism to explain the low TFB2 transcription activity. Domain swaps between TFB1 and TFB2 showed that the low activity of TFB2 is determined mainly by its N terminus. The low activity of TFB2 in promoter opening and transcription can be partially relieved by transcription factor E (TFE). The results indicate that the TFB N-terminal region, containing conserved Zn ribbon and B-finger motifs, is important in promoter opening and that TFE can compensate for defects in the N terminus through enhancement of promoter opening.

2004 ◽  
Vol 186 (18) ◽  
pp. 6306-6310 ◽  
Author(s):  
Yunwei Xie ◽  
John N. Reeve

ABSTRACT Transcription initiation in Archaea requires the assembly of a preinitiation complex containing the TATA- box binding protein (TBP), transcription factor B (TFB), and RNA polymerase (RNAP). The results reported establish the fate of Methanothermobacter thermautotrophicus TBP and TFB following transcription initiation by M. thermautotrophicus RNAP in vitro. TFB is released after initiation, during extension of the transcript from 4 to 24 nucleotides, but TBP remains bound to the template DNA. Regulation of archaeal transcription initiation by a repressor competition with TBP for TATA-box region binding must accommodate this observation.


1990 ◽  
Vol 10 (7) ◽  
pp. 3415-3420
Author(s):  
M W Van Dyke ◽  
M Sawadogo

The existence of separable functions within the human class II general transcription factor TFIID was probed for differential sensitivity to mild proteolytic treatment. Independent of whether TFIID was bound to DNA or free in solution, partial digestion with either one of a variety of nonspecific endoproteases generated a protease-resistant protein product that retained specific DNA recognition, as revealed by DNase I footprinting. However, in contrast to native TFIID, which interacts with the adenovirus major late (ML) promoter over a very broad DNA region, partially proteolyzed TFIID interacted with only a small region of the ML promoter immediately surrounding the TATA sequence. This novel footprint was very similar to that observed with the TATA factor purified from yeast cells. Partially proteolyzed human TFIID could form stable complexes that were resistant to challenge by exogenous templates. It could also nucleate the assembly of transcription complexes on the ML promoter with an efficiency comparable to that of native TFIID, yielding similar levels of transcription initiation. These results suggest a model in which the human TFIID protein is composed of at least two different regions or polypeptides: a protease-resistant "core," which by itself is sufficient for promoter recognition and basal transcriptional levels, and a protease-sensitive "tail," which interacts with downstream promoter regions and may be involved in regulatory processes.


2012 ◽  
Vol 287 (22) ◽  
pp. 18863-18871 ◽  
Author(s):  
Simon M. Ochs ◽  
Sybille Thumann ◽  
Renate Richau ◽  
Matt T. Weirauch ◽  
Todd M. Lowe ◽  
...  

1990 ◽  
Vol 10 (7) ◽  
pp. 3415-3420 ◽  
Author(s):  
M W Van Dyke ◽  
M Sawadogo

The existence of separable functions within the human class II general transcription factor TFIID was probed for differential sensitivity to mild proteolytic treatment. Independent of whether TFIID was bound to DNA or free in solution, partial digestion with either one of a variety of nonspecific endoproteases generated a protease-resistant protein product that retained specific DNA recognition, as revealed by DNase I footprinting. However, in contrast to native TFIID, which interacts with the adenovirus major late (ML) promoter over a very broad DNA region, partially proteolyzed TFIID interacted with only a small region of the ML promoter immediately surrounding the TATA sequence. This novel footprint was very similar to that observed with the TATA factor purified from yeast cells. Partially proteolyzed human TFIID could form stable complexes that were resistant to challenge by exogenous templates. It could also nucleate the assembly of transcription complexes on the ML promoter with an efficiency comparable to that of native TFIID, yielding similar levels of transcription initiation. These results suggest a model in which the human TFIID protein is composed of at least two different regions or polypeptides: a protease-resistant "core," which by itself is sufficient for promoter recognition and basal transcriptional levels, and a protease-sensitive "tail," which interacts with downstream promoter regions and may be involved in regulatory processes.


1993 ◽  
Vol 13 (2) ◽  
pp. 942-952 ◽  
Author(s):  
B Bartholomew ◽  
D Durkovich ◽  
G A Kassavetis ◽  
E P Geiduschek

A photo-cross-linking method has been used to map the subunits of Saccharomyces cerevisiae RNA polymerase (Pol) III with respect to DNA in binary (preinitiation) and ternary (RNA-elongating) transcription complexes. Transcription factor- and Pol III-containing complexes have been assembled on S. cerevisiae SUP4 tRNA(Tyr) gene probes containing the photoactive nucleotide 5-[N-(p-azidobenzoyl)-3-aminoallyl]-dUMP in different specified positions. Covalent DNA-protein linkages form upon irradiation of these complexes, and the Pol III subunits that are cross-linked to individual positions in the SUP4 tRNA gene have been identified. RNA Pol III cross-linking has been shown to require the box B downstream promoter element of the tRNA gene and the presence of transcription factor TFIIIB. Further proof of specificity has been provided by demonstrating that particular Pol III subunits move out of the range of upstream-placed photoactive nucleotides, and that others move into the range of downstream-placed photoactive nucleotides, as a consequence of initiating and elongating RNA chains. Binding and specific placement of Pol III have also been shown to require both the B' and the B" components of TFIIIB. Nine Pol III subunits are cross-linked from different positions of the SUP4 tRNA gene's nontranscribed strand. In binary transcription complexes, the two largest Pol III subunits are accessible to photo-cross-linking over the entire stretch of the DNase I footprint. The 27- and 34-kDa Pol III subunits are also relatively extended along DNA; its upstream projection makes the 34-kDa subunit a candidate for interaction with TFIIIB, while the 27-kDa subunit is accessible to photo-cross-linking from the leading edge of the Pol III binding site. Several subunits, including the 82- and 53-kDa subunits in binary transcription complexes, are relatively localized in their accessibility to cross-linking. Multiple Pol III subunits are accessible to specific cross-linking from a single photoactive nucleotide in the middle of the transcription bubble of an arrested ternary transcription complex. It is suggested that this precisely placed transcription complex comprises a dynamic ensemble of structural states rather than a single perfectly constrained entity.


1993 ◽  
Vol 13 (2) ◽  
pp. 942-952
Author(s):  
B Bartholomew ◽  
D Durkovich ◽  
G A Kassavetis ◽  
E P Geiduschek

A photo-cross-linking method has been used to map the subunits of Saccharomyces cerevisiae RNA polymerase (Pol) III with respect to DNA in binary (preinitiation) and ternary (RNA-elongating) transcription complexes. Transcription factor- and Pol III-containing complexes have been assembled on S. cerevisiae SUP4 tRNA(Tyr) gene probes containing the photoactive nucleotide 5-[N-(p-azidobenzoyl)-3-aminoallyl]-dUMP in different specified positions. Covalent DNA-protein linkages form upon irradiation of these complexes, and the Pol III subunits that are cross-linked to individual positions in the SUP4 tRNA gene have been identified. RNA Pol III cross-linking has been shown to require the box B downstream promoter element of the tRNA gene and the presence of transcription factor TFIIIB. Further proof of specificity has been provided by demonstrating that particular Pol III subunits move out of the range of upstream-placed photoactive nucleotides, and that others move into the range of downstream-placed photoactive nucleotides, as a consequence of initiating and elongating RNA chains. Binding and specific placement of Pol III have also been shown to require both the B' and the B" components of TFIIIB. Nine Pol III subunits are cross-linked from different positions of the SUP4 tRNA gene's nontranscribed strand. In binary transcription complexes, the two largest Pol III subunits are accessible to photo-cross-linking over the entire stretch of the DNase I footprint. The 27- and 34-kDa Pol III subunits are also relatively extended along DNA; its upstream projection makes the 34-kDa subunit a candidate for interaction with TFIIIB, while the 27-kDa subunit is accessible to photo-cross-linking from the leading edge of the Pol III binding site. Several subunits, including the 82- and 53-kDa subunits in binary transcription complexes, are relatively localized in their accessibility to cross-linking. Multiple Pol III subunits are accessible to specific cross-linking from a single photoactive nucleotide in the middle of the transcription bubble of an arrested ternary transcription complex. It is suggested that this precisely placed transcription complex comprises a dynamic ensemble of structural states rather than a single perfectly constrained entity.


Sign in / Sign up

Export Citation Format

Share Document