scholarly journals Influence of phosphate supply on teichoic acid and teichuronic acid content of Bacillus subtilis cell walls.

1982 ◽  
Vol 151 (1) ◽  
pp. 367-375 ◽  
Author(s):  
W K Lang ◽  
K Glassey ◽  
A R Archibald
1968 ◽  
Vol 106 (1) ◽  
pp. 237-243 ◽  
Author(s):  
D. W. Tempest ◽  
J. W. Dicks ◽  
D C Ellwood

1. Mg2+-limited Bacillus subtilis var. niger, growing in a chemostat in a simple salts medium, contained considerably more potassium and phosphorus than Mg2+-limited Aerobacter aerogenes growing in a similar medium at corresponding dilution rates. 2. Growth of the bacillus in a K+-limited environment did not lower the cellular potassium and phosphorus contents, the molar proportions of cell-bound magnesium, potassium, RNA (as nucleotide) and phosphorus being approximately constant at 1:13:5:13 (compared with 1:4:5:8 in Mg2+-limited or K+-limited A. aerogenes). 3. Growth of B. subtilis in a phosphate-limited environment caused the cellular phosphorus content to be lowered to a value similar to that of Mg2+-limited A. aerogenes, but the potassium content was not correspondingly lowered; the molar potassium:magnesium ratio varied from 14 to 17 with changes in dilution rate from 0·4 to 0·1hr.−1. 4. Whereas over 70% of the cell-bound phosphorus of Mg2+-limited or K+-limited A. aerogenes was contained in the nucleic acids, these polymers accounted for less than 50% of the phosphorus present in similarly limited B. subtilis; much phosphorus was present in the walls of the bacilli, bound in a teichoic acid-type compound composed of glycerol phosphate and glucose (but no alanine). 5. Phosphate-limited B. subtilis cell walls (from organisms grown at a dilution rate of 0·2hr.−1) contained little phosphorus and no detectable amounts of teichoic acid, but 40% of the cell-wall dry weight could be accounted for by a teichuronic acid-type compound; this contained a glucuronic acid and galactosamine, neither of which could be detected in the walls of Mg2+-limited B. subtilis grown at a corresponding rate. 6. It is suggested that the high concentration of potassium in growing B. subtilis (compared with A. aerogenes) results from the presence of large amounts of anionic polymer (teichoic acid or teichuronic acid) in the bacillus cell walls.


1975 ◽  
Vol 147 (1) ◽  
pp. 187-189 ◽  
Author(s):  
J Wright ◽  
J E Heckels

Cell walls of Bacillus subtilis W23 contain teichuronic acid when grown in a chemostat under phosphate limitation at a low dilution rate, but teichoic acid at a higher dilution rate. The teichuronic acid was purified and shown to be a polymer of glucuronic acid and N-acetylgalactosamine.


1977 ◽  
Vol 162 (2) ◽  
pp. 359-365 ◽  
Author(s):  
J E Heckels ◽  
P A Lambert ◽  
J Baddiley

When grown in a chemostat under various nutritional conditions, cells of Bacillus subtilis W23 produce walls containing teichoic acid or teichuronic acid. The binding of Mg2+ to these walls and to the isolated anionic polymers in solution was measured by equilibrium dialysis. In solution the ribitol teichoic acid bound Mg2+ in the molar ratio Mg2+/P=1:1 with an apparent association constant (Kassoc.) of 0.61 X 10(3)M-1, and the teichuronic acid bound Mg2+ in the ratio Mg2+/CO2-=1.1, Kassoc.=0.3 X 10(3)M-1. Cell walls containing teichuronic acid exhibited closely similar binding properties to those containing teichoic acid; in both cases Mg2+ was bound in the ratio Mg/P or Mg/CO2- of 0.5:1 and with a greater affinity than displayed by the isolated polymers in solution. It was concluded that Mg2+ ions are bound bivalently between anionic centres in the walls and that the incorporation of teichoic acid or teichuronic acid into the walls gives rise to similar ion-binding and charged properties. The results are discussed in relation to the possible functions of anionic polymers in cell walls.


1971 ◽  
Vol 20 (3) ◽  
pp. 442-450 ◽  
Author(s):  
Jean Heijenoort ◽  
Daniele Menjon ◽  
Bernard Flouret ◽  
Jekisiel Szulmajster ◽  
Jean Laporte ◽  
...  

1994 ◽  
Vol 10 (4) ◽  
pp. 472-474 ◽  
Author(s):  
R. J. C. McLean ◽  
A. M. Campbell ◽  
P. T. Khu ◽  
A. T. Persaud ◽  
L. E. Bickerton ◽  
...  

1969 ◽  
Vol 111 (1) ◽  
pp. 1-5 ◽  
Author(s):  
D C Ellwood ◽  
D. W. Tempest

1. Quantitative determination of the anionic polymers present in the walls of Bacillus subtilis var. niger organisms undergoing transition, in a chemostat culture, from either Mg2+-limitation to PO43−-limitation or K+-limitation to PO43−-limitation showed that teichuronic acid synthesis started immediately the culture became PO43−-limited and proceeded at a rate substantially faster than the rate of biomass synthesis. 2. Simultaneously, the cell-wall teichoic acid content diminished at a rate greater than that due to dilution by newly synthesized wall material, and fragments of teichoic acid and mucopeptide accumulated in the culture extracellular fluid. 3. Equally rapid reverse changes occurred when a PO43−-limited B. subtilis var. niger culture was returned to being Mg2+-limited. 4. It is concluded that in this organism both teichoic acid and teichuronic acid syntheses are expressions of a single genotype, and a mechanism for the control of synthesis of both polymers is suggested. 5. These results are discussed with reference to the constantly changing environmental conditions that obtain in a batch culture and the variation in bacterial cell-wall composition that is reported to occur throughout the growth cycle.


1998 ◽  
Vol 180 (15) ◽  
pp. 4007-4010 ◽  
Author(s):  
Ying Qi ◽  
F. Marion Hulett

ABSTRACT tagA, tagD, and tuaA operons are responsible for the synthesis of cell wall anionic polymer, teichoic acid, and teichuronic acid, respectively, in Bacillus subtilis. Under phosphate starvation conditions, teichuronic acid is synthesized while teichoic acid synthesis is inhibited. Expression of these genes is controlled by PhoP-PhoR, a two-component system. It has been proposed that PhoP∼P plays a key role in the activation oftuaA and the repression of tagA andtagD. In this study, we demonstrated the role of PhoP∼P in the switch process from teichoic acid synthesis to teichuronic acid synthesis, by using an in vitro transcription system. The results indicate that PhoP∼P is sufficient to repress the transcription of the tagA and tagD promoters and also to activate the transcription of the tuaA promoter.


Sign in / Sign up

Export Citation Format

Share Document