scholarly journals Pseudomonas stutzeri and related species undergo natural transformation.

1983 ◽  
Vol 153 (1) ◽  
pp. 93-99 ◽  
Author(s):  
C A Carlson ◽  
L S Pierson ◽  
J J Rosen ◽  
J L Ingraham
2006 ◽  
Vol 70 (2) ◽  
pp. 510-547 ◽  
Author(s):  
Jorge Lalucat ◽  
Antoni Bennasar ◽  
Rafael Bosch ◽  
Elena García-Valdés ◽  
Norberto J. Palleroni

SUMMARY Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri.


Microbiology ◽  
2011 ◽  
Vol 157 (12) ◽  
pp. 3349-3360 ◽  
Author(s):  
Alicia M. Gestal ◽  
Elissa F. Liew ◽  
Nicholas V. Coleman

Integrons are genetic elements that can capture and express genes packaged as gene cassettes. Here we report new methods that allow integrons to be studied and manipulated in their native bacterial hosts. Synthetic gene cassettes encoding gentamicin resistance (aadB) and green fluorescence (gfp), or lactose metabolism (lacZY), were made by PCR and self-ligation, converted to large tandem arrays by multiple displacement amplification, and introduced into Escherichia coli or Pseudomonas stutzeri strains via electroporation or natural transformation. Recombinants (GmR or Lac+) were obtained at frequencies ranging from 101 to 106 c.f.u. (µg DNA)−1. Cassettes were integrated by site-specific recombination at the integron attI site in nearly all cases examined (370/384), including both promoterless and promoter-containing cassettes. Fluorometric analysis of gfp-containing recombinants revealed that expression levels from the integron-associated promoter PC were five- to 10-fold higher in the plasmid-borne integron In3 compared with the P. stutzeri chromosomal integrons. Integration of lacZY cassettes into P. stutzeri integrons allowed the bacteria to grow on lactose, and the lacZY gene cassette was stably maintained in the absence of selection. This study is believed to be the first to show natural transformation by gene cassettes, and integron-mediated capture of catabolic gene cassettes.


2001 ◽  
Vol 183 (16) ◽  
pp. 4694-4701 ◽  
Author(s):  
Stefan Graupner ◽  
Nicole Weger ◽  
Monika Sohni ◽  
Wilfried Wackernagel

ABSTRACT The ubiquitous species Pseudomonas stutzeri has type IV pili, and these are essential for the natural transformation of the cells. An absolute transformation-deficient mutant obtained after transposon mutagenesis had an insertion in a gene which was termedpilT. The deduced amino acid sequence has identity with PilT of Pseudomonas aeruginosa (94%), Neisseria gonorrhoeae (67%), and other gram-negative species and it contains a nucleotide-binding motif. The mutant was hyperpiliated but defective for further pilus-associated properties, such as twitching motility and plating of pilus-specific phage PO4. [3H]thymidine-labeled DNA was bound by the mutant but not taken up. Downstream of pilT a gene, termedpilU, coding for a putative protein with 88% amino acid identity with PilU of P. aeruginosa was identified. Insertional inactivation did not affect piliation, twitching motility, or PO4 infection but reduced transformation to about 10%. The defect was fully complemented by PilU of nontransformable P. aeruginosa. When thepilAI gene (coding for the type IV pilus prepilin) was manipulated to code for a protein in which the six C-terminal amino acids were replaced by six histidine residues and then expressed from a plasmid, it gave a nonpiliated and twitching motility-defective phenotype in pilAI::Gmr cells but allowed transformability. Moreover, the mutant allele suppressed the absolute transformation deficiency caused by the pilT mutation. Considering the hypothesized role of pilT + in pilus retraction and the presumed requirement of retraction for DNA uptake, it is proposed that the pilT-independent transformation is promoted by PilA mutant protein either as single molecules or as minimal pilin assembly structures in the periplasm which may resemble depolymerized pili and that these cause the outer membrane pores to open for DNA entry.


Microbiology ◽  
2003 ◽  
Vol 149 (4) ◽  
pp. 895-901 ◽  
Author(s):  
Cecilia Berndt ◽  
Petra Meier ◽  
Wilfried Wackernagel

Sign in / Sign up

Export Citation Format

Share Document