scholarly journals Overproducing the Bacillus subtilis mother cell sigma factor precursor, Pro-sigma K, uncouples sigma K-dependent gene expression from dependence on intercompartmental communication.

1994 ◽  
Vol 176 (13) ◽  
pp. 3936-3943 ◽  
Author(s):  
S Lu ◽  
L Kroos
2003 ◽  
Vol 185 (13) ◽  
pp. 3905-3917 ◽  
Author(s):  
Mónica Serrano ◽  
Luísa Côrte ◽  
Jason Opdyke ◽  
Charles P. Moran, ◽  
Adriano O. Henriques

ABSTRACT During sporulation in Bacillus subtilis, the prespore-specific developmental program is initiated soon after asymmetric division of the sporangium by the compartment-specific activation of RNA polymerase sigma factor σF. σF directs transcription of spoIIIG, encoding the late forespore-specific regulator σG. Following synthesis, σG is initially kept in an inactive form, presumably because it is bound to the SpoIIAB anti-sigma factor. Activation of σG occurs only after the complete engulfment of the prespore by the mother cell. Mutations in spoIIIJ arrest sporulation soon after conclusion of the engulfment process and prevent activation of σG. Here we show that σG accumulates but is mostly inactive in a spoIIIJ mutant. We also show that expression of the spoIIIGE155K allele, encoding a form of σG that is not efficiently bound by SpoIIAB in vitro, restores σG-directed gene expression to a spoIIIJ mutant. Expression of spoIIIJ occurs during vegetative growth. However, we show that expression of spoIIIJ in the prespore is sufficient for σG activation and for sporulation. Mutations in the mother cell-specific spoIIIA locus are known to arrest sporulation just after completion of the engulfment process. Previous work has also shown that σG accumulates in an inactive form in spoIIIA mutants and that the need for spoIIIA expression for σG activation can be circumvented by the spoIIIGE155K allele. However, in contrast to the case for spoIIIJ, we show that expression of spoIIIA in the prespore does not support efficient sporulation. The results suggest that the activation of σG at the end of the engulfment process involves the action of spoIIIA from the mother cell and of spoIIIJ from the prespore.


2004 ◽  
Vol 186 (12) ◽  
pp. 4000-4013 ◽  
Author(s):  
Mónica Serrano ◽  
Alexandre Neves ◽  
Cláudio M. Soares ◽  
Charles P. Moran ◽  
Adriano O. Henriques

ABSTRACT RNA polymerase sigma factor σF initiates the prespore-specific program of gene expression during Bacillus subtilis sporulation. σF governs transcription of spoIIIG, encoding the late prespore-specific regulator σG. However, transcription of spoIIIG is delayed relative to other genes under the control of σF, and after synthesis, σG is initially kept in an inactive form. Activation of σG requires the complete engulfment of the prespore by the mother cell and expression of the spoIIIA and spoIIIJ loci. We screened for random mutations in spoIIIG that bypassed the requirement for spoIIIA for the activation of σG. We found a mutation (spoIIIGE156K) that resulted in an amino acid substitution at position 156, which is adjacent to the position of a mutation (E155K) previously shown to prevent interaction of SpoIIAB with σG. Comparative modelling techniques and in vivo studies suggested that the spoIIIGE156K mutation interferes with the interaction of SpoIIAB with σG. The σGE156K isoform restored σG-directed gene expression to spoIIIA mutant cells. However, expression of sspE-lacZ in the spoIIIA spoIIIGE156K double mutant was delayed relative to completion of the engulfment process and was not confined to the prespore. Rather, β-galactosidase accumulated throughout the entire cell at late times in development. This suggests that the activity of σGE156K is still regulated in the prespore of a spoIIIA mutant, but not by SpoIIAB. In agreement with this suggestion, we also found that expression of spoIIIGE156K from the promoter for the early prespore-specific gene spoIIQ still resulted in sspE-lacZ induction at the normal time during sporulation, coincidently with completion of the engulfment process. In contrast, transcription of spoIIIGE156K, but not of the wild-type spoIIIG gene, from the mother cell-specific spoIID promoter permitted the rapid induction of sspE-lacZ expression. Together, the results suggest that SpoIIAB is either redundant or has no role in the regulation of σG in the prespore.


1998 ◽  
Vol 180 (13) ◽  
pp. 3276-3284 ◽  
Author(s):  
Peter J. Lewis ◽  
Ling Juan Wu ◽  
Jeffery Errington

ABSTRACT Immunofluorescence microscopy was used to study the establishment of compartment-specific transcription during sporulation inBacillus subtilis. Analysis of the distribution of the anti-anti-sigma factor, SpoIIAA, in a variety of mutant backgrounds supports a model in which the SpoIIE phosphatase, which activates SpoIIAA by dephosphorylation, is sequestered onto the prespore face of the asymmetric septum. Thus, prespore-specific gene expression apparently arises as a result of the compartmentalization of SpoIIE protein. The results also suggest the existence of at least two compartment-specific programs of proteolysis, one dependent on the mother cell-specific sigma factor ςE and the other dependent on the prespore-specific sigma factor ςF.


2004 ◽  
Vol 186 (7) ◽  
pp. 1983-1990 ◽  
Author(s):  
David W. Hilbert ◽  
Vasant K. Chary ◽  
Patrick J. Piggot

ABSTRACT Spore formation by Bacillus subtilis is a primitive form of development. In response to nutrient starvation and high cell density, B. subtilis divides asymmetrically, resulting in two cells with different sizes and cell fates. Immediately after division, the transcription factor σF becomes active in the smaller prespore, which is followed by the activation of σE in the larger mother cell. In this report, we examine the role of the mother cell-specific transcription factor σE in maintaining the compartmentalization of gene expression during development. We have studied a strain with a deletion of the spoIIIE gene, encoding a DNA translocase, that exhibits uncompartmentalized σF activity. We have determined that the deletion of spoIIIE alone does not substantially impact compartmentalization, but in the spoIIIE mutant, the expression of putative peptidoglycan hydrolases under the control of σE in the mother cell destroys the integrity of the septum. As a consequence, small proteins can cross the septum, thereby abolishing compartmentalization. In addition, we have found that in a mutant with partially impaired control of σF, the activation of σE in the mother cell is important to prevent the activation of σF in this compartment. Therefore, the activity of σE can either maintain or abolish the compartmentalization of σF, depending upon the genetic makeup of the strain. We conclude that σE activity must be carefully regulated in order to maintain compartmentalization of gene expression during development.


1999 ◽  
Vol 181 (17) ◽  
pp. 5193-5200 ◽  
Author(s):  
Beth A. Lazazzera ◽  
Iren G. Kurtser ◽  
Ryan S. McQuade ◽  
Alan D. Grossman

ABSTRACT The competence and sporulation factor (CSF) of Bacillus subtilis is an extracellular pentapeptide produced from the product of phrC. CSF has at least three activities: (i) at low concentrations, it stimulates expression of genes activated by the transcription factor ComA; at higher concentrations, it (ii) inhibits expression of those same genes and (iii) stimulates sporulation. Because the activities of CSF are concentration dependent, we measured the amount of extracellular CSF produced by cells. We found that by mid-exponential phase, CSF accumulated to concentrations (1 to 5 nM) that stimulate ComA-dependent gene expression. Upon entry into stationary phase, CSF reached 50 to 100 nM, concentrations that stimulate sporulation and inhibit ComA-dependent gene expression. Transcription of phrC was found to be controlled by two promoters: P1, which precedes rapC, the gene upstream ofphrC; and P2, which directs transcription ofphrC only. Both RapC and CSF were found to be part of autoregulatory loops that affect transcription from P1, which we show is activated by ComA∼P. RapC negatively regulates its own expression, presumably due to its ability to inhibit accumulation of ComA∼P. CSF positively regulates its own expression, presumably due to its ability to inhibit RapC activity. Transcription from P2, which is controlled by the alternate sigma factor ςH, increased as cells entered stationary phase, contributing to the increase in extracellular CSF at this time. In addition to controlling transcription ofphrC, ςH appears to control expression of at least one other gene required for production of CSF.


Sign in / Sign up

Export Citation Format

Share Document