scholarly journals Genetic basis of Neisseria gonorrhoeae lipooligosaccharide antigenic variation.

1995 ◽  
Vol 177 (24) ◽  
pp. 7275-7279 ◽  
Author(s):  
R J Danaher ◽  
J C Levin ◽  
D Arking ◽  
C L Burch ◽  
R Sandlin ◽  
...  
Genetics ◽  
1987 ◽  
Vol 117 (3) ◽  
pp. 391-398
Author(s):  
Michael Koomey ◽  
Emil C Gotschlich ◽  
Ken Robbins ◽  
Sven Bergström ◽  
John Swanson

ABSTRACT Intragenic recombination between the single complete pilin gene (expression locus) and multiple, distinct, partial pilin gene copies (silent, storage loci) is thought to account for the generation of pilus antigenic diversity and piliation phase (on-off) changes exhibited by Neisseria gonorrhoeae. The mechanisms operating in the genomic rearrangements associated with these forms of pilus variation were investigated through the study of isogenic strains of gonococci bearing either wild-type or altered recA alleles. Examination of the rates of pilus phase variation and the genetic basis for changes in piliation status displayed by these strains show that recA mediated homologous recombination is required for these high frequency events and confirm that the nonpiliated state results from mutations in the expressed pilin gene. In a strain that is deficient in recA mediated homologous recombination, pilus phase variation occurs at a 100-1000-fold reduced rate and results predominantly from one class of spontaneous frameshift mutations within the pilin structural gene.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Egon A. Ozer ◽  
Lauren L. Prister ◽  
Shaohui Yin ◽  
Billy H. Ward ◽  
Stanimir Ivanov ◽  
...  

ABSTRACT Gene diversification is a common mechanism pathogens use to alter surface structures to aid in immune avoidance. Neisseria gonorrhoeae uses a gene conversion-based diversification system to alter the primary sequence of the gene encoding the major subunit of the pilus, pilE. Antigenic variation occurs when one of the nonexpressed 19 silent copies donates part of its DNA sequence to pilE. We have developed a method using Pacific Biosciences (PacBio) amplicon sequencing and custom software to determine pilin antigenic variation frequencies. The program analyzes 37 variable regions across the strain FA1090 1-81-S2 pilE gene and can be modified to determine sequence variation from other starting pilE sequences or other diversity generation systems. Using this method, we measured pilin antigenic variation frequencies for various derivatives of strain FA1090 and showed we can also analyze pilin antigenic variation frequencies during macrophage infection. IMPORTANCE Diversity generation systems are used by many unicellular organism to provide subpopulations of cell with different properties that are available when needed. We have developed a method using the PacBio DNA sequencing technology and a custom computer program to analyze the pilin antigenic variation system of the organism that is the sole cause of the sexually transmitted infection, gonorrhea.


2019 ◽  
Vol 201 (13) ◽  
Author(s):  
Lauren L. Prister ◽  
Jing Xu ◽  
H Steven Seifert

ABSTRACTThe major subunit of the type IV pilus (T4p) ofNeisseria gonorrhoeaeundergoes antigenic variation (AV) dependent on a guanine quadruplex (G4) DNA structure located upstream of the pilin gene. Since the presence of G4 DNA induces genome instability in both eukaryotic and prokaryotic chromosomes, we tested whether a double-strand break (DSB) at the site of thepilEG4 sequence could substitute for G4-directed pilin AV. The G4 motif was replaced by an I-SceI cut site, and the cut site was also introduced to locations near the origin of replication and the terminus. Expression of the I-SceI endonuclease from an irrelevant chromosomal site confirmed that the endonuclease functions to induce double-strand breaks at all three locations. No antigenic variants were detected when the G4 was replaced with the I-SceI cut site, but there was a growth defect from having a DSB in the chromosome, and suppressor mutations that were mainly deletions of the cut site and/or the entirepilEgene accumulated. Thus, thepilEG4 does not act to promote pilin AV by generating a DSB but requires either a different type of break, a nick, or more complex interactions with other factors to stimulate this programmed recombination system.IMPORTANCENeisseria gonorrhoeae, the causative agent of gonorrhea, possesses a DNA recombination system to change one of its surface-exposed antigens. This recombination system, known as antigenic variation, uses an alternate DNA structure to initiate variation. The guanine quadruplex DNA structure is known to cause nicks or breaks in DNA; however, much remains unknown about how this structure functions in cells. We show that inducing a break by different means does not allow antigenic variation, indicating that the DNA structure may have a more complicated role.


Biochemistry ◽  
2020 ◽  
Vol 59 (10) ◽  
pp. 1104-1112
Author(s):  
Lauren L. Prister ◽  
Shaohui Yin ◽  
Laty A. Cahoon ◽  
H Steven Seifert

2007 ◽  
Vol 189 (9) ◽  
pp. 3462-3470 ◽  
Author(s):  
Kimberly A. Kline ◽  
Alison K. Criss ◽  
Anne Wallace ◽  
H. Steven Seifert

ABSTRACT Gene conversion mediates the variation of virulence-associated surface structures on pathogenic microorganisms, which prevents host humoral immune responses from being effective. One of the best-studied gene conversion systems is antigenic variation (Av) of the pilin subunit of the Neisseria gonorrhoeae type IV pilus. To identify cis-acting DNA sequences that facilitate Av, the 700-bp region upstream of the pilin gene pilE was targeted for transposon mutagenesis. Four classes of transposon-associated mutations were isolated, distinguishable by their pilus-associated phenotypes: (i) insertions that did not alter Av or piliation, (ii) insertions that blocked Av, (iii) insertions that interfered with Av, and (iv) insertions that interfered with pilus expression and Av. Mutagenesis of the pilE promoter did not affect the frequency of Av, directly demonstrating that pilin Av is independent of pilE transcription. Two stretches of sequence upstream of pilE were devoid of transposon insertions, and some deletions in these regions were not recoverable, suggesting that they are essential for gonococcal viability. Insertions that blocked pilin Av were located downstream of the RS1 repeat sequence, and deletion of the region surrounding these insertions completely abrogated pilin Av, confirming that specific sequences 5′ to pilE are essential for the recombination events underlying pilin Av.


1998 ◽  
Vol 180 (7) ◽  
pp. 1955-1958 ◽  
Author(s):  
Carla D. Serkin ◽  
H. Steven Seifert

ABSTRACT Variation of the pilus of Neisseria gonorrhoeae occurs by the recombination of silent pilin DNA sequences into the pilin expression locus. We have developed a quantitative, competitive reverse transcription-PCR assay which measures the frequency of pilin antigenic variation independently of changes in gonococcal colony morphology and have determined this frequency within a gonococcal population. We have also studied the frequency of antigenic variation during growth and have concluded that growth does not dramatically influence the frequency of pilin antigenic variation, although a reproducible, twofold increase is observed upon the transition into late log/stationary phase.


Sign in / Sign up

Export Citation Format

Share Document