scholarly journals Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure.

1996 ◽  
Vol 178 (13) ◽  
pp. 3934-3938 ◽  
Author(s):  
M F Go ◽  
V Kapur ◽  
D Y Graham ◽  
J M Musser
1999 ◽  
Vol 92 (4) ◽  
pp. 232-238 ◽  
Author(s):  
Souha Ben Abderrazak ◽  
Bruno Oury ◽  
Altaf A. Lal ◽  
Marie-France Bosseno ◽  
Pierre Force-Barge ◽  
...  

2011 ◽  
Vol 9 (71) ◽  
pp. 1208-1215 ◽  
Author(s):  
Jukka Corander ◽  
Thomas R. Connor ◽  
Clíona A. O'Dwyer ◽  
J. Simon Kroll ◽  
William P. Hanage

Phenotypic and genetic variation in bacteria can take bewilderingly complex forms even within a single genus. One of the most intriguing examples of this is the genus Neisseria , which comprises both pathogens and commensals colonizing a variety of body sites and host species, and causing a range of disease. Complex relatedness among both named species and previously identified lineages of Neisseria makes it challenging to study their evolution. Using the largest publicly available collection of bacterial sequence data in combination with a population genetic analysis and experiment, we probe the contribution of inter-species recombination to neisserial population structure, and specifically whether it is more common in some strains than others. We identify hybrid groups of strains containing sequences typical of more than one species. These groups of strains, typical of a fuzzy species, appear to have experienced elevated rates of inter-species recombination estimated by population genetic analysis and further supported by transformation experiments. In particular, strains of the pathogen Neisseria meningitidis in the fuzzy species boundary appear to follow a different lifestyle, which may have considerable biological implications concerning distribution of novel resistance elements and meningococcal vaccine development. Despite the strong evidence for negligible geographical barriers to gene flow within the population, exchange of genetic material still shows directionality among named species in a non-uniform manner.


Genetics ◽  
2000 ◽  
Vol 154 (3) ◽  
pp. 1231-1238 ◽  
Author(s):  
David J Begun ◽  
Penn Whitley

Abstract NF-κB and IκB proteins have central roles in regulation of inflammation and innate immunity in mammals. Homologues of these proteins also play an important role in regulation of the Drosophila immune response. Here we present a molecular population genetic analysis of Relish, a Drosophila NF-κB/IκB protein, in Drosophila simulans and D. melanogaster. We find strong evidence for adaptive protein evolution in D. simulans, but not in D. melanogaster. The adaptive evolution appears to be restricted to the IκB domain. A possible explanation for these results is that Relish is a site of evolutionary conflict between flies and their microbial pathogens.


2012 ◽  
Vol 42 (3) ◽  
pp. 287-293 ◽  
Author(s):  
Wei Li ◽  
Vitaliano Cama ◽  
Yaoyu Feng ◽  
Robert H. Gilman ◽  
Caryn Bern ◽  
...  

2011 ◽  
Vol 59 (1) ◽  
pp. 206-224 ◽  
Author(s):  
Dorothy A. Steane ◽  
Dean Nicolle ◽  
Carolina P. Sansaloni ◽  
César D. Petroli ◽  
Jason Carling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document