scholarly journals GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae.

1997 ◽  
Vol 179 (17) ◽  
pp. 5594-5597 ◽  
Author(s):  
A Avendaño ◽  
A Deluna ◽  
H Olivera ◽  
L Valenzuela ◽  
A Gonzalez
1984 ◽  
Vol 4 (12) ◽  
pp. 2758-2766
Author(s):  
A P Mitchell ◽  
B Magasanik

Mutants of the yeast Saccharomyces cerevisiae have been isolated which fail to derepress glutamine synthetase upon glutamine limitation. The mutations define a single nuclear gene, GLN3, which is located on chromosome 5 near HOM3 and HIS1 and is unlinked to the structural gene for glutamine synthetase, GLN1. The three gln3 mutations are recessive, and one is amber suppressible, indicating that the GLN3 product is a positive regulator of glutamine synthetase expression. Four polypeptides, in addition to the glutamine synthetase subunit are synthesized at elevated rates when GLN3+ cultures are shifted from glutamine to glutamate media as determined by pulse-labeling and one- and two-dimensional gel electrophoresis. The response of all four proteins is blocked by gln3 mutations. In addition, the elevated NAD-dependent glutamate dehydrogenase activity normally found in glutamate-grown cells is not found in gln3 mutants. Glutamine limitation of gln1 structural mutants has the opposite effect, causing elevated levels of NAD-dependent glutamate dehydrogenase even in the presence of ammonia. We suggest that there is a regulatory circuit that responds to glutamine availability through the GLN3 product.


1981 ◽  
Vol 1 (2) ◽  
pp. 158-164
Author(s):  
N S Dunn-Coleman ◽  
E A Robey ◽  
A B Tomsett ◽  
R H Garrett

Glutamate synthase catalyzes glutamate formation from 2-oxoglutarate plus glutamine and plays an essential role when glutamate biosynthesis by glutamate dehydrogenase is not possible. Glutamate synthase activity has been determined in a number of Neurospora crassa mutant strains with various defects in nitrogen metabolism. Of particular interest were two mutants phenotypically mute except in an am (biosynthetic nicotinamide adenine dinucleotide phosphate-glutamate dehydrogenase deficient, glutamate requiring) background. These mutants, i and en-am, are so-called enhancers of am; they have been redesignated herein as en(am)-1 and en(am)-2, respectively. Although glutamate synthase levels in en(am)-1 were essentially wild type, the en(am)-2 strain was devoid of glutamate synthase activity under all conditions examined, suggesting that en(am)-2 may be the structural locus for glutamate synthase. Regulation of glutamate synthase occurred to some extent, presumably in response to glutamate requirements. Glutamate starvation, as in am mutants, led to enhanced activity. In contrast, glutamine limitation, as in gln-1 mutants, depressed glutamate synthase levels.


1991 ◽  
Vol 11 (12) ◽  
pp. 6229-6247 ◽  
Author(s):  
S M Miller ◽  
B Magasanik

We analyzed the upstream region of the GDH2 gene, which encodes the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae, for elements important for the regulation of the gene by the nitrogen source. The levels of this enzyme are high in cells grown with glutamate as the sole source of nitrogen and low in cells grown with glutamine or ammonium. We found that this regulation occurs at the level of transcription and that a total of six sites are required to cause a CYC1-lacZ fusion to the GDH2 gene to be regulated in the same manner as the NAD-linked glutamate dehydrogenase. Two sites behaved as upstream activation sites (UASs). The remaining four sites were found to block the effects of the two UASs in such a way that the GDH2-CYC1-lacZ fusion was not expressed unless the cells containing it were grown under conditions favorable for the activity of both UASs. This complex regulatory system appears to account for the fact that GDH2 expression is exquisitely sensitive to glutamine, whereas the expression of GLN1, coding for glutamine synthetase, is not nearly as sensitive.


1981 ◽  
Vol 1 (2) ◽  
pp. 158-164 ◽  
Author(s):  
N S Dunn-Coleman ◽  
E A Robey ◽  
A B Tomsett ◽  
R H Garrett

Glutamate synthase catalyzes glutamate formation from 2-oxoglutarate plus glutamine and plays an essential role when glutamate biosynthesis by glutamate dehydrogenase is not possible. Glutamate synthase activity has been determined in a number of Neurospora crassa mutant strains with various defects in nitrogen metabolism. Of particular interest were two mutants phenotypically mute except in an am (biosynthetic nicotinamide adenine dinucleotide phosphate-glutamate dehydrogenase deficient, glutamate requiring) background. These mutants, i and en-am, are so-called enhancers of am; they have been redesignated herein as en(am)-1 and en(am)-2, respectively. Although glutamate synthase levels in en(am)-1 were essentially wild type, the en(am)-2 strain was devoid of glutamate synthase activity under all conditions examined, suggesting that en(am)-2 may be the structural locus for glutamate synthase. Regulation of glutamate synthase occurred to some extent, presumably in response to glutamate requirements. Glutamate starvation, as in am mutants, led to enhanced activity. In contrast, glutamine limitation, as in gln-1 mutants, depressed glutamate synthase levels.


2005 ◽  
Vol 187 (14) ◽  
pp. 5019-5022 ◽  
Author(s):  
Catherine Tanous ◽  
Emilie Chambellon ◽  
Anne-Marie Sepulchre ◽  
Mireille Yvon

ABSTRACT The gene responsible for the uncommon glutamate dehydrogenase (GDH) activity of Lactococcus lactis was identified and characterized. It encodes a GDH of family I that is mainly active in glutamate biosynthesis, is carried by a large plasmid, and is included, with functional cadmium resistance genes, in a remnant Tn3-like transposon.


Sign in / Sign up

Export Citation Format

Share Document