cadmium resistance
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 53)

H-INDEX

39
(FIVE YEARS 4)

2021 ◽  
Vol 227 ◽  
pp. 112906
Author(s):  
Pengfei Liu ◽  
Zhengqiang Jin ◽  
Chunyan Dai ◽  
Lanping Guo ◽  
Xiuming Cui ◽  
...  

2021 ◽  
Author(s):  
Yixin Luo ◽  
Min Liao ◽  
Yuhao Zhang ◽  
Na Xu ◽  
Xiaomei Xie ◽  
...  

Abstract In order to explore whether the newly discovered biocontrol strain Paenibacillus sp., LYX-1 having antagonistic effect on peach brown rot was resistant to Cd2+, a series of growth of strain LYX-1 under different Cd concentration and biosorption experiments were conducted to living and dead strain LYX-1. Meanwhile, the Cd2+ resistance and biosorption mechanisms were further identified by Cd-resistant genes, TEM, SEM-EDS, FTIR and XPS analysis. The results showed that strain LYX-1 could resist 50 mg/L Cd2+ and the adsorption process of both living and dead strain LYX-1 all satisfied the pseudo-second kinetic equation. Under pH 8.0 and at a dose of 1.0 g/L strain, the removal capacities of living and dead cells were as high as 90.39% and 75.67% at 20 mg/L Cd2+, respectively. For the adsorption isotherm test, results revealed that both Langmuir (R2=0.9704) and Freundlich (R2=0.9915) model could describe the Cd2+ biosorption well for living strain LYX-1. The maximum equilibrium biosorption capacities of living and dead biomass were 30.6790 and 24.3752 mg/g, respectively. The adsorption mechanism was controlled by chemisorption with -OH, -NH, -C=O, O=C-O, C-N, S2− and phosphate functional groups on the cell surface of strain LYX-1, which were further identified by XPS. The insignificant biosorption difference of living and dead biomass was caused by CzcD gene in strain LYX-1 detoxifying cadmium through the heavy metal efflux system. The above results indicated that strain LYX-1 had higher tolerance and fixed capacity to Cd2+.


2021 ◽  
Vol 118 (42) ◽  
pp. e2022649118
Author(s):  
Brian J. Earley ◽  
Ciro Cubillas ◽  
Kurt Warnhoff ◽  
Raheel Ahmad ◽  
Alan Alcantar ◽  
...  

Cadmium is an environmental pollutant and significant health hazard that is similar to the physiological metal zinc. In Caenorhabditis elegans, high zinc homeostasis is regulated by the high zinc activated nuclear receptor (HIZR-1) transcription factor. To define relationships between the responses to high zinc and cadmium, we analyzed transcription. Many genes were activated by both high zinc and cadmium, and hizr-1 was necessary for activation of a subset of these genes; in addition, many genes activated by cadmium did not require hizr-1, indicating there are at least two mechanisms of cadmium-regulated transcription. Cadmium directly bound HIZR-1, promoted nuclear accumulation of HIZR-1 in intestinal cells, and activated HIZR-1–mediated transcription via the high zinc activation (HZA) enhancer. Thus, cadmium binding promotes HIZR-1 activity, indicating that cadmium acts as a zinc mimetic to hijack the high zinc response. To elucidate the relationships between high zinc and cadmium detoxification, we analyzed genes that function in three pathways: the pcs-1/phytochelatin pathway strongly promoted cadmium resistance but not high zinc resistance, the hizr-1/HZA pathway strongly promoted high zinc resistance but not cadmium resistance, and the mek-1/sek-1/kinase signaling pathway promoted resistance to high zinc and cadmium. These studies identify resistance pathways that are specific for high zinc and cadmium, as well as a shared pathway.


2021 ◽  
Vol 22 (18) ◽  
pp. 9697
Author(s):  
Huizhong Liu ◽  
Yu Zhang ◽  
Yingsi Wang ◽  
Xiaobao Xie ◽  
Qingshan Shi

Heavy metal pollution is widespread and persistent, and causes serious harm to the environment. Pseudomonas putida, a representative environmental microorganism, has strong resistance to heavy metals due to its multiple efflux systems. Although the functions of many efflux systems have been well-studied, the relationship between them remains unclear. Here, the relationship between the Czc and Cad systems that are predominantly responsible for cadmium efflux in P. putida KT2440 is identified. The results demonstrated that CzcR3, the response regulator of two-component system CzcRS3 in the Czc system, activates the expression of efflux pump genes czcCBA1 and czcCBA2 by directly binding to their promoters, thereby helping the strain resist cadmium stress. CzcR3 can also bind to its own promoter, but it has only a weak regulatory effect. The high-level expression of czcRS3 needs to be induced by Cd2+, and this relies on the regulation of CadR, a key regulator in the Cad system, which showed affinity to czcRS3 promoter. Our study indicates that the Cad system is involved in the regulation of the Czc system, and this relationship is important for maintaining the considerable resistance to cadmium in P. putida.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martina Kintlová ◽  
Jan Vrána ◽  
Roman Hobza ◽  
Nicolas Blavet ◽  
Vojtěch Hudzieczek

Cadmium is an environmental pollutant with high toxicity that negatively affects plant growth and development. To understand the molecular mechanisms of plant response to cadmium stress, we have performed a genome-wide transcriptome analysis on barley plants treated with an increased concentration of cadmium. Differential gene expression analysis revealed 10,282 deregulated transcripts present in the roots and 7,104 in the shoots. Among them, we identified genes related to reactive oxygen species metabolism, cell wall formation and maintenance, ion membrane transport and stress response. One of the most upregulated genes was PLANT CADMIUM RESISTACE 2 (HvPCR2) known to be responsible for heavy metal detoxification in plants. Surprisingly, in the transcriptomic data we identified four different copies of the HvPCR2 gene with a specific pattern of upregulation in individual tissues. Heterologous expression of all five barley copies in a Cd-sensitive yeast mutant restored cadmium resistance. In addition, four HvPCR2 were located in tandem arrangement in a single genomic region of the barley 5H chromosome. To our knowledge, this is the first example showing multiplication of the PCR2 gene in plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongcan Chen ◽  
Jun Liang ◽  
Zhicong Chen ◽  
Bo Wang ◽  
Tong Si

Heavy metal contamination is an environmental issue on a global scale. Particularly, cadmium poses substantial threats to crop and human health. Saccharomyces cerevisiae is one of the model organisms to study cadmium toxicity and was recently engineered as a cadmium hyperaccumulator. Therefore, it is desirable to overcome the cadmium sensitivity of S. cerevisiae via genetic engineering for bioremediation applications. Here we performed genome-scale overexpression screening for gene targets conferring cadmium resistance in CEN.PK2-1c, an industrial S. cerevisiae strain. Seven targets were identified, including CAD1 and CUP1 that are known to improve cadmium tolerance, as well as CRS5, NRG1, PPH21, BMH1, and QCR6 that are less studied. In the wild-type strain, cadmium exposure activated gene transcription of CAD1, CRS5, CUP1, and NRG1 and repressed PPH21, as revealed by real-time quantitative PCR analyses. Furthermore, yeast strains that contained two overexpression mutations out of the seven gene targets were constructed. Synergistic improvement in cadmium tolerance was observed with episomal co-expression of CRS5 and CUP1. In the presence of 200 μM cadmium, the most resistant strain overexpressing both CAD1 and NRG1 exhibited a 3.6-fold improvement in biomass accumulation relative to wild type. This work provided a new approach to discover and optimize genetic engineering targets for increasing cadmium resistance in yeast.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252899
Author(s):  
Jiayou Liu ◽  
Jie Zhang ◽  
Sun Ha Kim ◽  
Hyun-Sook Lee ◽  
Enrico Marinoia ◽  
...  

Brassica rapa is an important leafy vegetable that can potentially accumulate high concentrations of cadmium (Cd), posing a risk to human health. The aim of the present study was to identify cadmium detoxifying molecular mechanisms in B. rapa using a functional cloning strategy. A cDNA library constructed from roots of B. rapa plants treated with Cd was transformed into the Cd sensitive yeast mutant strain DTY167 that lacks the yeast cadmium factor (YCF1), and resistant yeast clones were selected on Cd containing media. Two hundred genes potentially conferring cadmium resistance were rescued from the surviving yeast clones and sequenced. Sequencing analysis revealed that genes encoding for metallothionein (MT)1, MT2a, MT2b and MT3, and phytochelatin synthase (PCS)1 and PCS2 accounted for 35.5%, 28.5%, 4%, 11.3%, 18.7% and 2%, respectively of the genes identified. MTs and PCSs expressing DTY167 cells showed resistance to Cd as well as to Zn. PCS1 expressing yeast cells were also more resistant to Pb compared to those expressing MTs or PCS2. RT-PCR results showed that Cd treatment strongly induced the expression levels of MTs in the root and shoot. Furthermore, the different MTs and PCSs exhibited tissue specific expression. The results indicate that MTs and PCS genes potentially play a central role in detoxifying Cd and other toxic metals in B. rapa.


Sign in / Sign up

Export Citation Format

Share Document