scholarly journals TP0453, a Concealed Outer Membrane Protein of Treponema pallidum, Enhances Membrane Permeability

2005 ◽  
Vol 187 (18) ◽  
pp. 6499-6508 ◽  
Author(s):  
Karsten R. O. Hazlett ◽  
David L. Cox ◽  
Marc Decaffmeyer ◽  
Michael P. Bennett ◽  
Daniel C. Desrosiers ◽  
...  

ABSTRACT The outer membrane of Treponema pallidum, the noncultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning β-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive β-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic α-helices. Insertion of the recombinant, nonlipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody.

2012 ◽  
Vol 287 (15) ◽  
pp. 11740-11750 ◽  
Author(s):  
Yongbin Xu ◽  
Arne Moeller ◽  
So-Young Jun ◽  
Minho Le ◽  
Bo-Young Yoon ◽  
...  

Gram-negative bacteria are capable of expelling diverse xenobiotic substances from within the cell by use of three-component efflux pumps in which the energy-activated inner membrane transporter is connected to the outer membrane channel protein via the membrane fusion protein. In this work, we describe the crystal structure of the membrane fusion protein MexA from the Pseudomonas aeruginosa MexAB-OprM pump in the hexameric ring arrangement. Electron microscopy study on the chimeric complex of MexA and the outer membrane protein OprM reveals that MexA makes a tip-to-tip interaction with OprM, which suggests a docking model for MexA and OprM. This docking model agrees well with genetic results and depicts detailed interactions. Opening of the OprM channel is accompanied by the simultaneous exposure of a protein structure resembling a six-bladed cogwheel, which intermeshes with the complementary cogwheel structure in the MexA hexamer. Taken together, we suggest an assembly and channel opening model for the MexAB-OprM pump. This study provides a better understanding of multidrug resistance in Gram-negative bacteria.


Author(s):  
Qingfeng Guan ◽  
Biswajit Bhowmick ◽  
Archana Upadhyay ◽  
Qian Han

: Outer membrane protein A (OmpA) is a unique outer membrane protein which is abundantly present in the outer membrane of Gram‐negative bacteria. OmpA is a transmembrane structural protein with a conserved amino acid sequence among different bacteria. This protein is involved in a number of functions like adhesion, toxicity, invasiveness, and biofilm formation in Gram-negative bacteria. Many studies have proposed that OmpA could be a therapeutic target for bacterial infection. Our review focusses on the studies involving recent development in the structure and functions of OmpA and further discussing its potential as a therapeutic target for bacterial infection.


1980 ◽  
Vol 30 (3) ◽  
pp. 709-717
Author(s):  
Marilyn R. Loeb ◽  
David H. Smith

The outer membrane protein composition of 50 disease isolates of Haemophilus influenzae has been determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All strains, including 28 strains of serotype b , one strain each of serotypes a, c, d, e , and f , and 17 untypable strains, had an outer membrane protein composition typical of gram-negative bacteria, i.e., these membranes contained two to three dozen proteins with four to six proteins accounting for most of their protein content. Variation in the mobility of these major outer membrane proteins from strain to strain was common but not universal; the observed patterns provided useful data and new insight into the epidemiology of type b disease. The basic findings can be summarized as follows: (i) All 50 strains possessed three proteins (one minor and two major) each having identical mobilities. The other proteins, both major and minor, varied in mobility. (ii) All type b strains possessed a fourth (major) protein of identical mobility. (iii) The 28 type b strains, on the basis of the mobility of the six major outer membrane proteins, could be divided into eight subtypes. Of all the other strains examined, both typable and untypable, only the serotype a strain belonged to one of these subtypes. (iv) The untypable strains showed considerable variation in the mobilities of their major outer membrane proteins. Of these 17 strains, 13 had an additional major outer membrane protein not present in encapsulated strains. (v) The outer membrane protein composition of a single strain remained unchanged after many passages on solid media, but varied with the growth phase. (vi) The outer membrane protein composition of isolates obtained from nine patients during an epidemic of type b meningitis varied, indicating that a single strain was not responsible for the epidemic. At least five different strains were responsible for these nine cases. (vii) Identical outer membrane protein compositions were observed in the following: in a type b strain and a mutant of this strain deficient in capsule production, indicating that the level of capsule synthesis is not obviously related to outer membrane protein composition; in type b strains isolated from different anatomic sites of patients acutely ill with meningitis, indicating that the strain associated with bacteremia is the same as that isolated from the cerebrospinal fluid; in type b strains isolated from siblings who contracted meningitis at about the same time, indicating infection with the same strain; and in type b strains isolated from the initial and repeat infection of a single patient, suggesting that reinfection was due to the same strain.


Sign in / Sign up

Export Citation Format

Share Document