scholarly journals Evaluation of Vitek MS for Differentiation of Cryptococcus neoformans and Cryptococcus gattii Genotypes

2018 ◽  
Vol 57 (1) ◽  
Author(s):  
Lumena P. Machado Siqueira ◽  
Viviane M. Favero Gimenes ◽  
Roseli Santos de Freitas ◽  
Márcia de Souza Carvalho Melhem ◽  
Lucas Xavier Bonfietti ◽  
...  

ABSTRACT Cryptococcus neoformans and Cryptococcus gattii are the main pathogenic species of invasive cryptococcosis among the Cryptococcus species. Taxonomic studies have shown that these two taxa have different genotypes or molecular types with biological and ecoepidemiological peculiarities. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been proposed as an alternative method for labor-intensive methods for C. neoformans and C. gattii genotype differentiation. However, Vitek MS, one of the commercial MALDI-TOF MS instruments, has not been yet been evaluated for this purpose. Thus, we constructed an in-house database with reference strains belonging to the different C. neoformans (VNI, VNII, VNIII, and VNIV) and C. gattii (VGI, VGII, VGIII, and VGIV) major molecular types by using the software Saramis Premium (bioMérieux, Marcy-l’Etoile, France). Then, this new database was evaluated for discrimination of the different genotypes. Our in-house database provided correct identification for all C. neoformans and C. gattii genotypes; however, due to the intergenotypic mass spectral similarities, a careful postanalytic evaluation is necessary to provide correct genotype identification.

2017 ◽  
Vol 55 (8) ◽  
pp. 2439-2444 ◽  
Author(s):  
João N. de Almeida ◽  
Viviane M. Favero Gimenes ◽  
Elaine C. Francisco ◽  
Lumena P. Machado Siqueira ◽  
Renato K. Gonçalves de Almeida ◽  
...  

ABSTRACT Trichosporon species are relevant etiologic agents of hospital-acquired infections. High mortality rates are attributed to Trichosporon deep-seated infections in immunocompromised individuals, making fast and accurate species identification relevant for hastening the discovery of best-targeted therapy. Recently, Trichosporon taxonomy has been reassessed, and three genera have been proposed for the pathogenic species: Trichosporon , Cutaneotrichosporon , and Apiotrichum . Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has replaced old phenotypic methods for microorganism identification in clinical laboratories, but spectral profile databases have to be evaluated and improved for optimal species identification performance. Vitek MS (bioMérieux) is one of the commercially available MALDI-TOF MS platforms for pathogen identification, and its spectral profile databases remain poorly evaluated for Trichosporon , Cutaneotrichosporon , and Apiotrichum species identification. We herein evaluated and improved Vitek MS for the identification of the main clinical relevant species of Trichosporon , Cutaneotrichosporon , and Apiotrichum using a large set of strains and isolates belonging to different yeast collections in Brazil and France.


2016 ◽  
Vol 54 (8) ◽  
pp. 2068-2073 ◽  
Author(s):  
Allison R. McMullen ◽  
Meghan A. Wallace ◽  
David H. Pincus ◽  
Kathy Wilkey ◽  
Carey-Ann D. Burnham

Invasive fungal infections have a high rate of morbidity and mortality, and accurate identification is necessary to guide appropriate antifungal therapy. With the increasing incidence of invasive disease attributed to filamentous fungi, rapid and accurate species-level identification of these pathogens is necessary. Traditional methods for identification of filamentous fungi can be slow and may lack resolution. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and accurate method for identification of bacteria and yeasts, but a paucity of data exists on the performance characteristics of this method for identification of filamentous fungi. The objective of our study was to evaluate the accuracy of the Vitek MS for mold identification. A total of 319 mold isolates representing 43 genera recovered from clinical specimens were evaluated. Of these isolates, 213 (66.8%) were correctly identified using the Vitek MS Knowledge Base, version 3.0 database. When a modified SARAMIS (Spectral Archive and Microbial Identification System) database was used to augment the version 3.0 Knowledge Base, 245 (76.8%) isolates were correctly identified. Unidentified isolates were subcultured for repeat testing; 71/319 (22.3%) remained unidentified. Of the unidentified isolates, 69 were not in the database. Only 3 (0.9%) isolates were misidentified by MALDI-TOF MS (includingAspergillus amoenus[n= 2] andAspergillus calidoustus[n= 1]) although 10 (3.1%) of the original phenotypic identifications were not correct. In addition, this methodology was able to accurately identify 133/144 (93.6%)Aspergillussp. isolates to the species level. MALDI-TOF MS has the potential to expedite mold identification, and misidentifications are rare.


2019 ◽  
Vol 57 (4) ◽  
Author(s):  
Yong Jun Kwon ◽  
Jong Hee Shin ◽  
Seung A Byun ◽  
Min Ji Choi ◽  
Eun Jeong Won ◽  
...  

ABSTRACT Candida auris is an emerging worldwide fungal pathogen. Over the past 20 years, 61 patient isolates of C. auris (4 blood and 57 ear) have been obtained from 13 hospitals in Korea. Here, we reanalyzed those molecularly identified isolates using two matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) systems, including Biotyper and Vitek MS, followed by antifungal susceptibility testing, sequencing of the ERG11 gene, and genotyping. With a research-use-only (RUO) library, 83.6% and 93.4% of the isolates were correctly identified by Biotyper and Vitek MS, respectively. Using an in vitro diagnostic (IVD) library of Vitek MS, 96.7% of the isolates were correctly identified. Fluconazole-resistant isolates made up 62.3% of the isolates, while echinocandin- or multidrug-resistant isolates were not found. Excellent essential (within two dilutions, 96.7%) and categorical agreements (93.4%) between the Clinical and Laboratory Standards Institute (CLSI) and Vitek 2 (AST-YS07 card) methods were observed for fluconazole. Sequencing ERG11 for all 61 isolates revealed that only 3 fluconazole-resistant isolates showed the Erg11p amino acid substitution K143R. All 61 isolates showed identical multilocus sequence typing (MLST). Pulsed-field gel electrophoresis (PFGE) analyses revealed that both blood and ear isolates had the same or similar patterns. These results show that MALDI-TOF MS and Vitek 2 antifungal susceptibility systems can be reliable diagnostic tools for testing C. auris isolates from Korean hospitals. The Erg11p mutation was seldom found among Korean isolates of C. auris, and multidrug resistance was not found. Both MLST and PFGE analyses suggest that these isolates are genetically similar.


2017 ◽  
Vol 55 (4) ◽  
pp. 1162-1176 ◽  
Author(s):  
Andrew M. Borman ◽  
Mark Fraser ◽  
Adrien Szekely ◽  
Daniel E. Larcombe ◽  
Elizabeth M. Johnson

ABSTRACT Exophiala is a ubiquitous pleomorphic genus comprising at least 40 species, many of which have been associated with superficial, visceral, or systemic infections in humans, other mammals, or cold-blooded animals. In this study, we investigated the potential of matrix-assisted laser desorption–ionization time of flight mass spectrometry (MALDI-TOF MS) for the identification of Exophiala species. A total of 89 isolates (including 50 human and 4 animal clinical isolates) stored in the National Collection of Pathogenic Fungi were identified by PCR amplification and sequencing of internal transcribed spacer region 1. Eighty-three of the isolates corresponded to 16 known species within Exophiala/Rhinocladiella . The remaining six isolates are shown by phylogenetic analyses based on four loci to represent two novel Exophiala species. Four isolates from domestic bathrooms which form a sister species with Exophiala lecanii-corni are described here as Exophiala lavatrina sp. nov. The remaining two isolates, both from subcutaneous infections, are distantly related to Exophiala oligosperma and are described here as Exophiala campbellii sp. nov. The triazoles and terbinafine exhibited low MICs against all Exophiala isolates in vitro . MALDI-TOF MS successfully distinguished all 18 species and identified all isolates after appropriate reference spectra were created and added to commercial databases. Intraspecific mean log scores ranged from 1.786 to 2.584 and were consistently significantly higher than interspecific scores (1.193 to 1.624), with the exception of E. lecanii-corni and E. lavatrina , for which there was considerable log score overlap. In summary, MALDI-TOF MS allows the rapid and accurate identification of a wide range of clinically relevant Exophiala species.


2015 ◽  
Vol 53 (11) ◽  
pp. 3438-3447 ◽  
Author(s):  
In Kwon Park ◽  
Amy P. Hsu ◽  
Hervé Tettelin ◽  
Shamira J. Shallom ◽  
Steven K. Drake ◽  
...  

The smooth-to-rough colony morphology shift inMycobacterium abscessushas been implicated in loss of glycopeptidolipid (GPL), increased pathogenicity, and clinical decline in cystic fibrosis (CF) patients. However, the evolutionary phenotypic and genetic changes remain obscure. Serial isolates from nine non-CF patients with persistentM. abscessusinfection were characterized by colony morphology, lipid profile via thin-layer chromatography and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), sequencing of eight genes in the GPL locus, and expression level offadD23, a key gene involved in the biosynthesis of complex lipids. All 50 isolates were typed asM. abscessussubspeciesabscessusand were clonally related within each patient. Rough isolates, all lacking GPL, predominated at later disease stages, some showing variation within rough morphology. While most (77%) rough isolates harbored detrimental mutations inmps1andmps2, 13% displayed previously unreported mutations inmmpL4aandmmpS4, the latter yielding a putative GPL precursor. Two isolates showed no deleterious mutations in any of the eight genes sequenced. Mixed populations harboring different GPL locus mutations were detected in 5 patients, demonstrating clonal diversification, which was likely overlooked by conventional acid-fast bacillus (AFB) culture methods. Our work highlights applications of MALDI-TOF MS beyond identification, focusing on mycobacterial lipids relevant in virulence and adaptation. Later isolates displayed accumulation of triacylglycerol and reduced expression offadD23, sometimes preceding rough colony onset. Our results indicate that clonal diversification and a shift in lipid metabolism, including the loss of GPL, occur during chronic lung infection withM. abscessus. GPL loss alone may not account for all traits associated with rough morphology.


2015 ◽  
Vol 54 (2) ◽  
pp. 376-384 ◽  
Author(s):  
S. P. Buckwalter ◽  
S. L. Olson ◽  
B. J. Connelly ◽  
B. C. Lucas ◽  
A. A. Rodning ◽  
...  

The value of matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and yeasts is well documented in the literature. Its utility for the identification of mycobacteria andNocardiaspp. has also been reported in a limited scope. In this work, we report the specificity of MALDI-TOF MS for the identification of 162Mycobacteriumspecies and subspecies, 53Nocardiaspecies, and 13 genera (totaling 43 species) of other aerobic actinomycetes using both the MALDI-TOF MS manufacturer's supplied database(s) and a custom database generated in our laboratory. The performance of a simplified processing and extraction procedure was also evaluated, and, similar to the results in an earlier literature report, our viability studies confirmed the ability of this process to inactivateMycobacterium tuberculosisprior to analysis. Following library construction and the specificity study, the performance of MALDI-TOF MS was directly compared with that of 16S rRNA gene sequencing for the evaluation of 297 mycobacteria isolates, 148Nocardiaspecies isolates, and 61 other aerobic actinomycetes isolates under routine clinical laboratory working conditions over a 6-month period. MALDI-TOF MS is a valuable tool for the identification of these groups of organisms. Limitations in the databases and in the ability of MALDI-TOF MS to rapidly identify slowly growing mycobacteria are discussed.


2020 ◽  
Vol 59 (1) ◽  
pp. e02358-20
Author(s):  
Jianchun Wei ◽  
Huijuan Zhang ◽  
Huifang Zhang ◽  
Enmin Zhang ◽  
Binghua Zhang ◽  
...  

ABSTRACTThe objective of this study was to construct a rapid, high-throughput, and biosafety-compatible screening method for Bacillus anthracis and Bacillus cereus based on matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS coupled to ClinProTools was used to discover MALDI-TOF MS biomarker peaks and generate a classification model based on a genetic algorithm (GA) to differentiate between different Bacillus anthracis and Bacillus cereus isolates. Thirty Bacillus anthracis and 19 Bacillus cereus strains were used to construct and analyze the model, and 40 Bacillus strains were used for validation. For the GA screening model, the cross-validation values, which reflect the ability of the model to handle variability among the test spectra, and the recognition capability values, which reflect the model’s ability to correctly identify its component spectra, were all 100%. This model contained 10 biomarker peaks (m/z 3,339.9, 3,396.3, 3,682.4, 5,476.7, 6,610.6, 6,680.1, 7,365.3, 7,792.4, 9,475.8, and 10,934.1) used to correctly identify 28 Bacillus anthracis and 12 Bacillus cereus isolates from 40 Bacillus isolates, with a sensitivity and specificity of 100%. With the obvious advantages of being rapid, highly accurate, and highly sensitive and having a low cost and high throughput, MALDI-TOF MS ClinProTools is a powerful and reliable tool for screening Bacillus anthracis and Bacillus cereus strains.


2015 ◽  
Vol 53 (11) ◽  
pp. 3580-3588 ◽  
Author(s):  
Raquel Arinto-Garcia ◽  
Marcos Daniel Pinho ◽  
João André Carriço ◽  
José Melo-Cristino ◽  
Mário Ramirez

The heterogeneity of members of theStreptococcus anginosusgroup (SAG) has traditionally hampered their correct identification. Recently, the group was subdivided into 6 taxa whose prevalence among human infections is poorly described. We evaluated the accuracy of the Rapid ID32 Strep test, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), and a PCR multiplex method to identify 212 SAG isolates recovered from human infections to the species and subspecies level by using multilocus sequence analysis (MLSA) as the gold standard. We also determined the antimicrobial susceptibilities of the isolates. Representatives of all SAG taxa were found among our collection. MALDI-TOF MS and the Rapid ID32 Strep test correctly identified 92% and 68% of the isolates to the species level, respectively, but showed poor performance at the subspecies level, and the latter was responsible for major identification errors. The multiplex PCR method results were in complete agreement with the MLSA identifications but failed to distinguish the subspeciesStreptococcus constellatussubsp.pharyngisandS. constellatussubsp.viborgensis. A total of 145 MLSA sequence types were present in our collection, indicating that within each taxon a number of different lineages are capable of causing infection. Significant antibiotic resistance was observed only to tetracycline, erythromycin, and clindamycin and was present in most taxa. MALDI-TOF MS is a reliable method for routine SAG species identification, while the need for identification to the subspecies level is not clearly established.


2015 ◽  
Vol 53 (4) ◽  
pp. 1399-1402 ◽  
Author(s):  
Shuping Nie ◽  
Baoyu Tian ◽  
Xiaowei Wang ◽  
David H. Pincus ◽  
Martin Welker ◽  
...  

We explored the use of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) for identification ofFusobacterium nucleatumsubspecies. MALDI-TOF MS spectra of fiveF. nucleatumsubspecies (animalis,fusiforme,nucleatum,polymorphum, andvincentii) were analyzed and divided into four distinct clusters, including subsp.animalis,nucleatum,polymorphum, andfusiforme/vincentii. MALDI-TOF MS with the modified SARAMIS database further correctly identified 28 of 34F. nucleatumclinical isolates to the subspecies level.


2014 ◽  
Vol 53 (2) ◽  
pp. 465-476 ◽  
Author(s):  
David Triest ◽  
Dirk Stubbe ◽  
Koen De Cremer ◽  
Denis Piérard ◽  
Anne-Cécile Normand ◽  
...  

The rates of infection withFusariummolds are increasing, and a diverse number ofFusariumspp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289Fusariumstrains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database.In vitroantifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating betweenFusariumspecies complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, someFusariumspecies complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolatedFusariumstrains demonstrated its validity.


Sign in / Sign up

Export Citation Format

Share Document