scholarly journals Use of protein A-treated sera in unmasking herpes simplex virus type 1 (HSV-1) immunoglobulin A and identifying HSV-1 immunoglobulin G as the predominant neutralizing antibody.

1979 ◽  
Vol 10 (4) ◽  
pp. 415-418 ◽  
Author(s):  
J J Ratner ◽  
B A Sanford ◽  
K O Smith
1991 ◽  
Vol 261 (2) ◽  
pp. L204-L209 ◽  
Author(s):  
J. F. van Iwaarden ◽  
J. A. van Strijp ◽  
M. J. Ebskamp ◽  
A. C. Welmers ◽  
J. Verhoef ◽  
...  

In the present study we used flow cytometry to investigate the phagocytosis of fluorescein isothiocyanate-labeled herpes simplex virus type 1 (FITC-HSV-1) by rat alveolar macrophages and the effects of surfactant protein A (SP-A) on this process. The phagocytosis of FITC-HSV-1 by alveolar macrophages, which was studied as a model for virus phagocytosis in general, was strongly enhanced in the presence of SP-A. The SP-A-mediated phagocytosis was time and concentration dependent, reaching a maximal level after 15 min of incubation and at an SP-A concentration of 5 micrograms/ml. Using a fluorescence quenching technique, we could show that at least 65% of the viruses were indeed internalized by the macrophages. The addition of SP-A to the system was sufficient for the phagocytosis of FITC-HSV-1 by the alveolar macrophages, suggesting that SP-A acts as an opsonin. This hypothesis was further strengthened by the observation that F(ab')2 fragments of immunoglobulin G directed against SP-A could abolish FITC-HSV-1 phagocytosis by alveolar macrophages preincubated with SP-A. Comparing the opsonic capacity of serum and SP-A, SP-A proved to be twice as potent as serum in stimulating phagocytosis of FITC-HSV-1 by alveolar macrophages. Complement factor C1q, which is known to possess a similar collagen-like domain as SP-A, did not stimulate phagocytosis of FITC-HSV-1 by alveolar macrophages nor did it inhibit SP-A-mediated HSV-1 phagocytosis. This study demonstrates that SP-A may play an important role in the antiviral defenses of the lung.


2004 ◽  
Vol 78 (5) ◽  
pp. 2562-2571 ◽  
Author(s):  
Xiaoqing Lin ◽  
John M. Lubinski ◽  
Harvey M. Friedman

ABSTRACT Herpes simplex virus type 1 (HSV-1) glycoprotein gE functions as an immunoglobulin G (IgG) Fc receptor (FcγR) that promotes immune evasion. When an IgG antibody binds by the F(ab′)2 domain to an HSV antigen, the Fc domain of some of the same antibody molecules binds to the FcγR, which blocks Fc-mediated functions. gE is a type 1 membrane glycoprotein with a large ectodomain that is expressed on the virion envelope and infected-cell surface. Our goal was to determine if immunizing with gE protein fragments could produce antibodies that bind by the F(ab′)2 domain to gE and block the FcγR, as measured by competitively inhibiting nonimmune human IgG binding to the FcγR. Three gE peptides were constructed in baculovirus spanning almost the entire ectodomain and used to immunize mice and rabbits. Two fragments were highly effective at producing antibodies that bind by the F(ab′)2 domain and block the FcγR. The most potent of these two antibodies was far more effective at blocking the FcγR than antibodies that are only capable of binding by the Fc domains to the FcγR, including anti-gC, anti-gD, and nonimmune IgG. These results suggest that immunizing with gE fragments has potential for preventing immune evasion by blocking activities mediated by the HSV-1 FcγR.


2007 ◽  
Vol 81 (18) ◽  
pp. 9653-9664 ◽  
Author(s):  
Satoko Iwahori ◽  
Noriko Shirata ◽  
Yasushi Kawaguchi ◽  
Sandra K. Weller ◽  
Yoshitaka Sato ◽  
...  

ABSTRACT The ataxia telangiectasia-mutated (ATM) protein, a member of the related phosphatidylinositol 3-like kinase family encoded by a gene responsible for the human genetic disorder ataxia telangiectasia, regulates cellular responses to DNA damage and viral infection. It has been previously reported that herpes simplex virus type 1 (HSV-1) infection induces activation of protein kinase activity of ATM and hyperphosphorylation of transcription factor, Sp1. We show that ATM is intimately involved in Sp1 hyperphosphorylation during HSV-1 infection rather than individual HSV-1-encoded protein kinases. In ATM-deficient cells or cells silenced for ATM expression by short hairpin RNA targeting, hyperphosphorylation of Sp1 was prevented even as HSV-1 infection progressed. Mutational analysis of putative ATM phosphorylation sites on Sp1 and immunoblot analysis with phosphopeptide-specific Sp1 antibodies clarified that at least Ser-56 and Ser-101 residues on Sp1 became phosphorylated upon HSV-1 infection. Serine-to-alanine mutations at both sites on Sp1 considerably abolished hyperphosphorylation of Sp1 upon infection. Although ATM phosphorylated Ser-101 but not Ser-56 on Sp1 in vitro, phosphorylation of Sp1 at both sites was not detected at all upon infection in ATM-deficient cells, suggesting that cellular kinase(s) activated by ATM could be involved in phosphorylation at Ser-56. Upon viral infection, Sp1-dependent transcription in ATM expression-silenced cells was almost the same as that in ATM-intact cells, suggesting that ATM-dependent phosphorylation of Sp1 might hardly affect its transcriptional activity during the HSV-1 infection. ATM-dependent Sp1 phosphorylation appears to be a global response to various DNA damage stress including viral DNA replication.


2002 ◽  
Vol 76 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
John M. Lubinski ◽  
Ming Jiang ◽  
Lauren Hook ◽  
Yueh Chang ◽  
Chad Sarver ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) encodes a complement-interacting glycoprotein, gC, and an immunoglobulin G (IgG) Fc binding glycoprotein, gE, that mediate immune evasion by affecting multiple aspects of innate and acquired immunity, including interfering with complement components C1q, C3, C5, and properdin and blocking antibody-dependent cellular cytotoxicity. Previous studies evaluated the individual contributions of gC and gE to immune evasion. Experiments in a murine model that examines the combined effects of gC and gE immune evasion on pathogenesis are now reported. Virulence of wild-type HSV-1 is compared with mutant viruses defective in gC-mediated C3 binding, gE-mediated IgG Fc binding, or both immune evasion activities. Eliminating both activities greatly increased susceptibility of HSV-1 to antibody and complement neutralization in vitro and markedly reduced virulence in vivo as measured by disease scores, virus titers, and mortality. Studies with C3 knockout mice indicated that other activities attributed to these glycoproteins, such as gC-mediated virus attachment to heparan sulfate or gE-mediated cell-to-cell spread, do not account for the reduced virulence of mutant viruses. The results support the importance of gC and gE immune evasion in vivo and suggest potential new targets for prevention and treatment of HSV disease.


2009 ◽  
Vol 84 (4) ◽  
pp. 2110-2121 ◽  
Author(s):  
Ken Sagou ◽  
Masashi Uema ◽  
Yasushi Kawaguchi

ABSTRACT Herpesvirus nucleocapsids assemble in the nucleus and must cross the nuclear membrane for final assembly and maturation to form infectious progeny virions in the cytoplasm. It has been proposed that nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane, and these enveloped nucleocapsids then fuse with the outer nuclear membrane to enter the cytoplasm. Little is known about the mechanism(s) for nuclear egress of herpesvirus nucleocapsids and, in particular, which, if any, cellular proteins are involved in the nuclear egress pathway. UL12 is an alkaline nuclease encoded by herpes simplex virus type 1 (HSV-1) and has been suggested to be involved in viral DNA maturation and nuclear egress of nucleocapsids. Using a live-cell imaging system to study cells infected by a recombinant HSV-1 expressing UL12 fused to a fluorescent protein, we observed the previously unreported nucleolar localization of UL12 in live infected cells and, using coimmunoprecipitation analyses, showed that UL12 formed a complex with nucleolin, a nucleolus marker, in infected cells. Knockdown of nucleolin in HSV-1-infected cells reduced capsid accumulation, as well as the amount of viral DNA resistant to staphylococcal nuclease in the cytoplasm, which represented encapsidated viral DNA, but had little effect on these viral components in the nucleus. These results indicated that nucleolin is a cellular factor required for efficient nuclear egress of HSV-1 nucleocapsids in infected cells.


Sign in / Sign up

Export Citation Format

Share Document