vaccinia viruses
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 17)

H-INDEX

50
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Yvon Deschambault ◽  
Jessie Lynch ◽  
Bryce Warner ◽  
Kevin Tierney ◽  
Denise Huynh ◽  
...  

SUMMARYIncreasing cases of SARS-CoV-2 breakthrough infections from immunization with predominantly spike protein based COVID-19 vaccines highlight the need for alternative vaccines using different platforms and/or antigens. In this study, we expressed SARS-CoV-2 spike and nucleocapsid proteins in a novel vaccinia virus ACAM2000 platform (rACAM2000). Following a single intramuscular immunization, the rACAM2000 co-expressing the spike and nucleocapsid proteins induced significantly improved protection against SARS-CoV-2 challenge in comparison to rACAM2000 expressing the individual proteins in a hamster model, as shown by reduced weight loss and quicker recovery time. The protection was associated with reduced viral loads, increased neutralizing antibody titre and reduced neutrophil-to-lymphocyte ratio. Thus, our study demonstrates that the rACAM2000 expressing a combination of the spike and nucleocapsid antigens is a promising COVID-19 vaccine candidate and further studies will investigate if the rACAM2000 vaccine candidate can induce a long lasting immunity against infection of SARS-CoV-2 variants of concern.


Author(s):  
Kevin Chiem ◽  
Maria M. Lorenzo ◽  
Javier Rangel-Moreno ◽  
Maria De La Luz Garcia-Hernandez ◽  
Jun-Gyu Park ◽  
...  

Despite the eradication of variola virus (VARV), the causative agent of smallpox, poxviruses still represent an important threat to human health due to their possible use as bioterrorism agents and the emergence of zoonotic poxvirus diseases. Recombinant vaccinia viruses (rVV) expressing easily traceable fluorescent or luciferase reporter genes have significantly contributed to the progress of poxvirus research.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Karine Lima Lourenço ◽  
Leandro Andrade Chinália ◽  
Lethícia Ribeiro Henriques ◽  
Rodrigo Araújo Lima Rodrigues ◽  
Flávio Guimarães da Fonseca

Abstract Background The vaccinia virus (VACV) isolates, Guarani P1 virus (GP1V) and Passatempo virus (PSTV), were isolated during zoonotic outbreaks in Brazil. Each one of them belongs to two different VACV clades, defined by biological aspects that include virulence in mice and phylogenetic analysis. Considering that information about how vaccinia viruses from different groups elicit immune responses in animals is scarce, we investigated such responses in mice infected either by GP1V (group 2) or PSTV (group 1), using VACV Western Reserve strain (VACV-WR) as control. Methods The severity of the infections was evaluated in BALB/c mice considering diverse clinical signs and defined scores, and the immune responses triggered by GP1V and PSTV infections were analysed by immune cell phenotyping and intra-cytoplasmic cytokines detection. Results We detected a reduction in total lymphocytes (CD3 +), macrophages (CD14 +), and NK cells (CD3-CD49 +) in animals infected with VACV-WR or GP1V. The VACV-WR and GP1V viruses, belonging to the most virulent group in a murine model, were able to down-modulate the cell immune responses upon mice infection. In contrast, PSTV, a virus considered less virulent in a murine model, showed little ability to down-modulate the mice immune responses. Mice infected with VACV-WR and GP1V viruses presented significant weight loss and developed lesions in their spleens, as well as damage to liver and lungs whereas mice infected with PSTV developed only moderate clinical signs. Conclusions Our results suggest that VACV immunomodulation in vivo is clade-related and is proportional to the strain’s virulence upon infection. Our data corroborate the classification of the different Brazilian VACV isolates into clades 1 and 2, taking into account not only phylogenetic criteria, but also clinical and immunological data.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yogesh B. Narkhede ◽  
Avneesh K. Gautam ◽  
Rohaine V. Hsu ◽  
Wilson Rodriguez ◽  
Nehemiah T. Zewde ◽  
...  

Poxviruses are dangerous pathogens, which can cause fatal infection in unvaccinated individuals. The causative agent of smallpox in humans, variola virus, is closely related to the bovine vaccinia virus, yet the molecular basis of their selectivity is currently incompletely understood. Here, we examine the role of the electrostatics in the selectivity of the smallpox protein SPICE and vaccinia protein VCP toward the human and bovine complement protein C3b, a key component of the complement immune response. Electrostatic calculations, in-silico alanine-scan and electrostatic hotspot analysis, as introduced by Kieslich and Morikis (PLoS Comput. Biol. 2012), are used to assess the electrostatic complementarity and to identify sites resistant to local perturbation where the electrostatic potential is likely to be evolutionary conserved. The calculations suggest that the bovine C3b is electrostatically prone to selectively bind its VCP ligand. On the other hand, the human isoform of C3b exhibits a lower electrostatic complementarity toward its SPICE ligand. Yet, the human C3b displays a highly preserved electrostatic core, which suggests that this isoform could be less selective in binding different ligands like SPICE and the human Factor H. This is supported by experimental cofactor activity assays revealing that the human C3b is prone to bind both SPICE and Factor H, which exhibit diverse electrostatic properties. Additional investigations considering mutants of SPICE and VCP that revert their selectivity reveal an “electrostatic switch” into the central modules of the ligands, supporting the critical role of the electrostatics in the selectivity. Taken together, these evidences provide insights into the selectivity mechanism of the complement regulator proteins encoded by the variola and vaccinia viruses to circumvent the complement immunity and exert their pathogenic action. These fundamental aspects are valuable for the development of novel vaccines and therapeutic strategies.


2021 ◽  
Author(s):  
Karine Lima Lourenço ◽  
Leandro Andrade Chinália ◽  
Lethícia Rodrigues Henriques ◽  
Rodrigo Araújo Lima Rodrigues ◽  
Flávio Guimarães da Fonseca

Abstract BackgroundThe Vaccinia virus (VACV) isolates, Guarani P1 virus (GP1V) and Passatempo virus (PSTV), were isolated from zoonotic outbreaks in Brazil and belong to two different VACV clades, as defined by biological aspects that include virulence in mice and phylogenetic analysis. Considering that information about how vaccinia viruses from different groups elicit immune responses in animals is scarce, we investigated such responses in mice infected by GP1V (group 2) or PSTV (group 1) using VACV Western Reserve strain (WR) as control. MethodsThe severity of the infections was evaluated in BALB/c mice considering diverse clinical signs and defined scores, and the immune responses triggered by GP1V and PSTV infections were analysed by immune cell phenotyping and intra-cytoplasmic cytokines detection. ResultsInfected mice showed significant weight loss and developed spleen lesions as well as liver and lung damage. Mice infected with PSTV, however, developed only moderate clinical signs. We detected a reduction of total lymphocytes (CD3+), macrophages (CD14+) and NK cells (CD3-CD49+) in animals infected with VACV-WR or GP1V. VACV-WR was able to significantly downmodulate cell immune responses upon mice infection, and GP1V-infected animals also showed intense downmodulation in cell responses. Contrarily, PSTV presented little ability to downmodulate mice immune responses. ConclusionsOur results suggest that VACV immunomodulation in vivo is clade-related and is proportional to the strain virulence upon infection. Our data corroborate the classification of the different Brazilian VACV isolates in clades 1 and 2, taking into account not only phylogenetic criteria, but also clinical and immunological data.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 317
Author(s):  
Kenneth Lundstrom

Vaccine development against SARS-CoV-2 has been fierce due to the devastating COVID-19 pandemic and has included all potential approaches for providing the global community with safe and efficient vaccine candidates in the shortest possible timeframe. Viral vectors have played a central role especially using adenovirus-based vectors. Additionally, other viral vectors based on vaccinia viruses, measles viruses, rhabdoviruses, influenza viruses and lentiviruses have been subjected to vaccine development. Self-amplifying RNA virus vectors have been utilized for lipid nanoparticle-based delivery of RNA as COVID-19 vaccines. Several adenovirus-based vaccine candidates have elicited strong immune responses in immunized animals and protection against challenges in mice and primates has been achieved. Moreover, adenovirus-based vaccine candidates have been subjected to phase I to III clinical trials. Recently, the simian adenovirus-based ChAdOx1 vector expressing the SARS-CoV-2 S spike protein was approved for use in humans in the UK.


Author(s):  
Min Yang ◽  
Esther Giehl ◽  
Chao Feng ◽  
Mathilde Feist ◽  
Hongqi Chen ◽  
...  

AbstractIn this study, we aimed to apply the cytokine IL-36γ to cancer immunotherapy by constructing new oncolytic vaccinia viruses (OV) expressing interleukin-36γ (IL-36γ-OVs), leveraging unique synergism between OV and IL-36γ’s ability to promote antitumor adaptive immunity and modulate tumor microenvironment (TME). IL-36γ-OV had dramatic therapeutic efficacies in multiple murine tumor models, frequently leading to complete cancer eradication in large fractions of mice. Mechanistically, IL-36-γ-armed OV induced infiltration of lymphocytes and dendritic cells, decreased myeloid-derived suppressor cells and M2-like tumor-associated macrophages, and T cell differentiation into effector cells. Further study showed that IL-36γ-OV increased the number of tumor antigen-specific CD4+ and CD8+ T cells and the therapeutic efficacy depended on both CD8+ and CD4+ T cells. These results demonstrate that these IL36γ-armed OVs exert potent therapeutic efficacy mainly though antitumor immunity and they may hold great potential to advance treatment in human cancer patients.


Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 43
Author(s):  
Natalia Ingrid Oliveira Silva ◽  
Jaqueline Silva de Oliveira ◽  
Erna Geessien Kroon ◽  
Giliane de Souza Trindade ◽  
Betânia Paiva Drumond

The global emergence of zoonotic viruses, including poxviruses, poses one of the greatest threats to human and animal health. Forty years after the eradication of smallpox, emerging zoonotic orthopoxviruses, such as monkeypox, cowpox, and vaccinia viruses continue to infect humans as well as wild and domestic animals. Currently, the geographical distribution of poxviruses in a broad range of hosts worldwide raises concerns regarding the possibility of outbreaks or viral dissemination to new geographical regions. Here, we review the global host ranges and current epidemiological understanding of zoonotic orthopoxviruses while focusing on orthopoxviruses with epidemic potential, including monkeypox, cowpox, and vaccinia viruses.


2020 ◽  
Vol 21 (20) ◽  
pp. 7618
Author(s):  
Susanne Berchtold ◽  
Julia Beil ◽  
Christian Raff ◽  
Irina Smirnow ◽  
Martina Schell ◽  
...  

Genetically modified vaccinia viruses (VACVs) have been shown to possess profound oncolytic capabilities. However, tumor cell resistance to VACVs may endanger broad clinical success. Using cell mass assays, viral replication studies, and fluorescence microscopy, we investigated primary resistance phenomena of cell lines of the NCI-60 tumor cell panel to GLV-1h94, a derivative of the Lister strain of VACV, which encodes the enzyme super cytosine deaminase (SCD) that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic compound 5-fluorouracil (5-FU). After treatment with GLV-1h94 alone, only half of the cell lines were defined as highly susceptible to GLV-1h94-induced oncolysis. When adding 5-FC, 85% of the cell lines became highly susceptible to combinatorial treatment; none of the tested tumor cell lines exhibited a “high-grade resistance” pattern. Detailed investigation of the SCD prodrug system suggested that the cytotoxic effect of converted 5-FU is directed either against the cells or against the virus particles, depending on the balance between cell line-specific susceptibility to GLV-1h94-induced oncolysis and 5-FU sensitivity. The data provided by this work underline that cellular resistance against VACV-based virotherapy can be overcome by virus-encoded prodrug systems. Phase I/II clinical trials are recommended to further elucidate the enormous potential of this combination therapy.


Sign in / Sign up

Export Citation Format

Share Document