scholarly journals 16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates

2000 ◽  
Vol 38 (10) ◽  
pp. 3623-3630 ◽  
Author(s):  
Michel Drancourt ◽  
Claude Bollet ◽  
Antoine Carlioz ◽  
Rolland Martelin ◽  
Jean-Pierre Gayral ◽  
...  

Some bacteria are difficult to identify with phenotypic identification schemes commonly used outside reference laboratories. 16S ribosomal DNA (rDNA)-based identification of bacteria potentially offers a useful alternative when phenotypic characterization methods fail. However, as yet, the usefulness of 16S rDNA sequence analysis in the identification of conventionally unidentifiable isolates has not been evaluated with a large collection of isolates. In this study, we evaluated the utility of 16S rDNA sequencing as a means to identify a collection of 177 such isolates obtained from environmental, veterinary, and clinical sources. For 159 isolates (89.8%) there was at least one sequence in GenBank that yielded a similarity score of ≥97%, and for 139 isolates (78.5%) there was at least one sequence in GenBank that yielded a similarity score of ≥99%. These similarity score values were used to defined identification at the genus and species levels, respectively. For isolates identified to the species level, conventional identification failed to produce accurate results because of inappropriate biochemical profile determination in 76 isolates (58.7%), Gram staining in 16 isolates (11.6%), oxidase and catalase activity determination in 5 isolates (3.6%) and growth requirement determination in 2 isolates (1.5%). Eighteen isolates (10.2%) remained unidentifiable by 16S rDNA sequence analysis but were probably prototype isolates of new species. These isolates originated mainly from environmental sources (P = 0.07). The 16S rDNA approach failed to identify Enterobacter andPantoea isolates to the species level (P = 0.04; odds ratio = 0.32 [95% confidence interval, 0.10 to 1.14]). Elsewhere, the usefulness of 16S rDNA sequencing was compromised by the presence of 16S rDNA sequences with >1% undetermined positions in the databases. Unlike phenotypic identification, which can be modified by the variability of expression of characters, 16S rDNA sequencing provides unambiguous data even for rare isolates, which are reproducible in and between laboratories. The increase in accurate new 16S rDNA sequences and the development of alternative genes for molecular identification of certain taxa should further improve the usefulness of molecular identification of bacteria.

2014 ◽  
Vol 52 (12) ◽  
pp. 1056-1056
Author(s):  
Ok-Hwa Hwang ◽  
Sebastian Raveendar ◽  
Young-Ju Kim ◽  
Ji-Hun Kim ◽  
Tae-Hun Kim ◽  
...  

2002 ◽  
Vol 68 (1) ◽  
pp. 219-226 ◽  
Author(s):  
Christine F. Favier ◽  
Elaine E. Vaughan ◽  
Willem M. De Vos ◽  
Antoon D. L. Akkermans

ABSTRACT The establishment of bacterial communities in two healthy babies was examined for more than the first 10 months of life by monitoring 16S ribosomal DNA (rDNA) diversity in fecal samples by PCR and denaturing gradient gel electrophoresis (DGGE) and by analyzing the sequences of the major ribotypes. DGGE profiles of the dominant populations in the intestines of the infants were obtained by analyzing daily or weekly fecal samples. After delivery, the germfree infant gastrointestinal tracts were rapidly colonized, and the succession of bacteria in each ecosystem was monitored. During the first few days of life the profiles were simple, but they became more complex as the bacterial diversity increased with time in both babies. Clone libraries of amplified 16S rDNA fragments from baby feces were constructed, and these libraries allowed identification of the bacterial types by comparative DNA sequence analysis; the bacteria identified included members of the genera Bifidobacterium, Ruminococcus, Enterococcus, Clostridium, and Enterobacter. Species most closely related to the genera Bifidobacterium and Ruminococcus in particular dominated the intestinal microbiota based on the stability over time and the numbers, as estimated by the intensities of the bands. However, 19 of the 34 cloned rDNA sequences exhibited less than 97% identity with sequences of known bacteria or cloned sequences in databases. This study showed that using PCR-DGGE and 16S rDNA sequence analysis together resulted in a dynamic description of bacterial colonization in the infant intestinal ecosystem and allowed visualization of bacteria that are difficult to cultivate or to detect by other methods.


1998 ◽  
Vol 64 (5) ◽  
pp. 840-841 ◽  
Author(s):  
Ryuji Kondo ◽  
Manabu Komura ◽  
Shingo Hiroishi ◽  
Yoshihiko Hata

2014 ◽  
Vol 63 (2) ◽  
pp. 157-166 ◽  
Author(s):  
OZLEM GUNAY-ESIYOK ◽  
NEFISE AKCELIK ◽  
MUSTAFA AKCELIK

Lactococcus lactis strains are used commonly as starters, which contribute to desirable flavour and texture properties known as strain-specific, in dairy industry. Genomic heterogeneity of 30 L. lactis strains originating from Turkey and characterized phenotypically were investigated in this study. Plasmid profiling, PFGE and 16S rDNA sequence analyses were performed to determine the genetic variability of strains. High degree of heterogeneity was detected among the L. lactis strains. Plasmid profiles of strains showed that compared to the plasmid free control strains, namely; L. lactis subsp. lactis IL1403 and L. lactis subsp. cremoris MG1614, all tested strains carried one to ten plasmids with molecular size ranging from 1.5 to 41.5kb. The fingerprints of strains obtained by PFGE from digestion with ApaI, SmaI and I-CeuI restriction endonucleases of chromosomal DNA's were compared with each other. All strains out of four were grouped into a large cluster A with at least 44% similarity level. The other four strains formed a minor duster B, distinctively different from major cluster A. PFGE results were confirmed by 16S rDNA sequence analysis and strains included in cluster B were identified as members of different species. These results suggested that morphologic and biochemical methods should be verified by reliable molecular approaches for the purpose of strain typing. Also, PFGE was found suitable to determine genomic differentiations among inter- and intra species.


Biofouling ◽  
2010 ◽  
Vol 26 (8) ◽  
pp. 893-899 ◽  
Author(s):  
D. Inbakandan ◽  
P. Sriyutha Murthy ◽  
R. Venkatesan ◽  
S. Ajmal Khan

Sign in / Sign up

Export Citation Format

Share Document