scholarly journals Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water

PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0181860 ◽  
Author(s):  
Anna Maria Timperio ◽  
Susanna Gorrasi ◽  
Lello Zolla ◽  
Massimiliano Fenice
2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas Brauge ◽  
Sylvain Trigueros ◽  
Arnaud Briet ◽  
Sabine Debuiche ◽  
Guylaine Leleu ◽  
...  

We evaluated the performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) associated with the Bruker BioTyperTM V7.0.0 database for the identification of 713 bacterial strains isolated from seafood products and sea water samples (ANSES B3PA collection) under culture conditions that may have been significantly different from those used to create the reference spectrum vs. the 16S rDNA sequencing. We identified 78.8% of seafood isolates with 46.7% at the species level (Bruker score above 2) and 21.2% (Bruker score between 1.7 and 2) at the genus level by the two identification methods, except for 3.8% of isolates with a difference of identification between the two methods (Bruker score between 1.7 and 2). There were 41.9% isolates (Bruker score below 1.7) with the identification at the genus level. We identified 94.4% of seafood isolates with 16S rDNA sequencing. The MALDI-TOF allowed a better strain identification to the species level contrary to the 16s rDNA sequencing, which allowed an identification mainly to the genus level. MALDI-TOF MS in association with the Bruker database and 16S rDNA sequencing are powerful tools to identify a wide variety of bacteria from seafood but require further identification by biochemical, molecular technique or other conventional tests.


Author(s):  
Hui Shan Chua ◽  
Yih Harng Soh ◽  
Shih Keng Loong ◽  
Sazaly AbuBakar

Abstract Background Francisella philomiragia is a very rare opportunistic pathogen of humans which causes protean diseases such as pneumonia and other systemic infections. Subsequent failure of prompt treatment may result in poor prognosis with mortality among infected patients. Case presentation The present report describes a case of F. philomiragia bacteraemia first reported in Malaysia and Asian in a 60-year-old patient with underlying end-stage renal disease (ESRF) and diabetes mellitus. He presented with Acute Pulmonary Oedema with Non-ST-Elevation Myocardial Infarction (NSTEMI) in our hospital. He was intubated in view of persistent type I respiratory failure and persistent desaturation despite post haemodialysis. Blood investigation indicated the presence of ongoing infection and inflammation. The aerobic blood culture growth of F. philomiragia was identified using the matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (Score value: 2.16) and confirmed by 16S Ribosomal DNA (16S rDNA) sequencing. He was discharged well on day 26 of admission, after completing one week of piperacillin/tazobactam and two weeks of doxycycline. Conclusion Clinical suspicion should be raised if patients with known risk factors are presenting with pneumonia or pulmonary nodules especially as these are the most common manifestations of F. philomiragia infection. Early diagnosis via accurate laboratory identification of the organism through MALDI-TOF mass spectrometry and molecular technique such as 16S rDNA sequencing are vital for prompt treatment that results in better outcomes for the afflicted patients.


2013 ◽  
Vol 712-715 ◽  
pp. 494-497
Author(s):  
Zhi Lei Tan ◽  
Yu Qiao Wei ◽  
Shuang Liang ◽  
Ran Zhang ◽  
Miao Liu ◽  
...  

Matrix-assisted laser desorption/ionization time-off light mass spectrometry (MALDI-TOF MS) is increasingly used as a microbial diagnostic method for species identification of pathogens. However, MALDI-TOF MS identification of food bacteria was seldom reported. Ten strains isolated from different pickled vegetables were rapid identified by MALDI-TOF MS. The results of MALDI-TOF MS were confirmed by 16S rDNA sequencing method. Different score values in MALDI-TOF MS revealed nineLeuconostoc mesenteroides and oneStaphylococcus.Identification success at the species and genus levels was 90% (9/10) and 100% (10/10), respectively.16S rDNA sequencing results showed that nine stains were identified asLeuconostoc mesenteroides and one wasStaphylococcus saprophyticus.Results obtained demonstrate that MALDI-TOFMS is a promising method for discriminating and identifying food bacteria.


2018 ◽  
Vol 30 (3) ◽  
pp. 354-361 ◽  
Author(s):  
Samantha J. Lawton ◽  
Allison M. Weis ◽  
Barbara A. Byrne ◽  
Heather Fritz ◽  
Conor C. Taff ◽  
...  

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was compared to conventional biochemical testing methods and nucleic acid analyses (16S rDNA sequencing, hippurate hydrolysis gene testing, whole genome sequencing [WGS]) for species identification of Campylobacter isolates obtained from chickens ( Gallus gallus domesticus, n = 8), American crows ( Corvus brachyrhynchos, n = 17), a mallard duck ( Anas platyrhynchos, n = 1), and a western scrub-jay ( Aphelocoma californica, n = 1). The test results for all 27 isolates were in 100% agreement between MALDI-TOF MS, the combined results of 16S rDNA sequencing, and the hippurate hydrolysis gene PCR ( p = 0.0027, kappa = 1). Likewise, the identifications derived from WGS from a subset of 14 isolates were in 100% agreement with the MALDI-TOF MS identification. In contrast, biochemical testing misclassified 5 isolates of C. jejuni as C. coli, and 16S rDNA sequencing alone was not able to differentiate between C. coli and C. jejuni for 11 sequences ( p = 0.1573, kappa = 0.0857) when compared to MALDI-TOF MS and WGS. No agreement was observed between MALDI-TOF MS dendrograms and the phylogenetic relationships revealed by rDNA sequencing or WGS. Our results confirm that MALDI-TOF MS is a fast and reliable method for identifying Campylobacter isolates to the species level from wild birds and chickens, but not for elucidating phylogenetic relationships among Campylobacter isolates.


Author(s):  
N. Tyshkivskaya ◽  
A. Tyshkivskaya

Use of MALDI-TOF mass spectrometry to identify yeast and molds in animal feed. The material for the work was animal feed samples received for research from diff erent regions of Ukraine. The presence of yeast and molds was determined according to DSTU ISO 7954:2006. To establish the general contamination of the feed with micromycetes, the fungi were fi rst isolated from the feed by planting them on Saburo medium, and the serial dilution method was used to calculate the content of fungi diaspores in 1 g of feed. The feed samples were incubated and studied at a temperature of 24 ° C for 5–7 days. The identifi cation of molds was carried out using the MALDI-TOF method. In the process of mycological examination of feed during 2018–2019. 198 animal feed samples were examined. During the study period, the largest number of feed was examined, which was 30.4% in 2018, of the total number of samples (19.6% - feed for poultry, 10.8% - for pigs). For fi ve months of 2019, we observed the same trend: in 31.1% of cases, the defi nitions of yeast and molds in compound feeds prevailed, of which 19.8% accounted for compound feeds for poultry and in 11.3% of cases for pigs. In second place in the number of studies, corn samples are 11.9 and 11.3% in 2018 and 2019, respectively. The most common types of fungi in the feed were representatives of the genera Fusarium, Penicillium, Aspergillus, Alternaria, Mucor, Rhizopus, Cladosporium. The affi liation of microscopic fungi to specifi c genera was determined by assessing the morphology of the fungal colony on media and the morphology of conidiophore structures Particular attention was paid to microscopic fungi of the Fusarium family, which are producers of various mycotoxins. Using the MALDI Biotyper software, automatic identifi cation was performed based on a comparison of the collected initial spectra of the fungus with the reference spectra of the database of the instrument itself, as well as with the library of the University of Belgium (BCCM, Belgian Co-Ordinateo collections of micro-organism). Following the results of mass spectrometry, microscopic fungi of the Fusarium family were represented by 9 species. Of these, 5 species were most often found: F. proliferatum, F. acutatum, F. subglutinans, F. verticillioides. Among the fungi of the Aspergillus family, A. fl avus, A. pseudoglaucus, A. tubingensis, and A. niger predominated. Species identifi cation of microscopic fungi using mass spectrometry helps quickly and accurately identify mold fungi and yeast. Determination of the species affi liation of microscopic organisms occurs through analysis of the protein fraction of the lysate of microscopic fungi and yeast ("direct protein profi ling"). MALDI Biotyper software includes automatic identifi cation of molds based on a comparison of the output spectra with the reference spectra of the database. Identifi cation of microorganisms using MALDI-TOF MS is based on the assessment of ribosomal proteins that are usually present in the cell. The sensitivity of the MALDI-TOF MS method is 103106 m.k./cm. In this case, the accuracy of identifi cation depends on the amount of test material. To determine the likelyhood of identifi cation, a given logarithmic indicator is the compliance coeffi cient Score, the value of which is used to evaluate the reliability and adequacy of the results. The higher the match rate, the more likely it is to get the correct identifi cation result. MALDI-TOF technology for mass spectrometric identifi cation of micromycetes has a high measurement speed, low cost of reagents and materials used, and simple preparation holes. MALDI-TOF MS has a high diagnostic sensitivity. Key words: mold identifi cation, MALDI-TOF, mass spectrometry, Fusarium, Penicillium, Aspergillus, Alternaria, Mucor, Rhizopus, Cladosporium.


2000 ◽  
Vol 38 (10) ◽  
pp. 3623-3630 ◽  
Author(s):  
Michel Drancourt ◽  
Claude Bollet ◽  
Antoine Carlioz ◽  
Rolland Martelin ◽  
Jean-Pierre Gayral ◽  
...  

Some bacteria are difficult to identify with phenotypic identification schemes commonly used outside reference laboratories. 16S ribosomal DNA (rDNA)-based identification of bacteria potentially offers a useful alternative when phenotypic characterization methods fail. However, as yet, the usefulness of 16S rDNA sequence analysis in the identification of conventionally unidentifiable isolates has not been evaluated with a large collection of isolates. In this study, we evaluated the utility of 16S rDNA sequencing as a means to identify a collection of 177 such isolates obtained from environmental, veterinary, and clinical sources. For 159 isolates (89.8%) there was at least one sequence in GenBank that yielded a similarity score of ≥97%, and for 139 isolates (78.5%) there was at least one sequence in GenBank that yielded a similarity score of ≥99%. These similarity score values were used to defined identification at the genus and species levels, respectively. For isolates identified to the species level, conventional identification failed to produce accurate results because of inappropriate biochemical profile determination in 76 isolates (58.7%), Gram staining in 16 isolates (11.6%), oxidase and catalase activity determination in 5 isolates (3.6%) and growth requirement determination in 2 isolates (1.5%). Eighteen isolates (10.2%) remained unidentifiable by 16S rDNA sequence analysis but were probably prototype isolates of new species. These isolates originated mainly from environmental sources (P = 0.07). The 16S rDNA approach failed to identify Enterobacter andPantoea isolates to the species level (P = 0.04; odds ratio = 0.32 [95% confidence interval, 0.10 to 1.14]). Elsewhere, the usefulness of 16S rDNA sequencing was compromised by the presence of 16S rDNA sequences with >1% undetermined positions in the databases. Unlike phenotypic identification, which can be modified by the variability of expression of characters, 16S rDNA sequencing provides unambiguous data even for rare isolates, which are reproducible in and between laboratories. The increase in accurate new 16S rDNA sequences and the development of alternative genes for molecular identification of certain taxa should further improve the usefulness of molecular identification of bacteria.


2011 ◽  
Vol 400 (7) ◽  
pp. 1905-1911 ◽  
Author(s):  
Kazuyuki Sogawa ◽  
Masaharu Watanabe ◽  
Kenichi Sato ◽  
Syunsuke Segawa ◽  
Chisato Ishii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document