scholarly journals Evaluation of Phenotypic and Genotypic Methods for Subtyping Campylobacter jejuni Isolates from Humans, Poultry, and Cattle

2000 ◽  
Vol 38 (10) ◽  
pp. 3800-3810 ◽  
Author(s):  
Eva Møller Nielsen ◽  
Jørgen Engberg ◽  
Vivian Fussing ◽  
Lise Petersen ◽  
Carl-Henrik Brogren ◽  
...  

Six methods for subtyping of Campylobacter jejuni were compared and evaluated with a collection of 90 isolates from poultry, cattle, and sporadic human clinical cases as well as from a waterborne outbreak. The applied methods were Penner heat-stable serotyping; automated ribotyping (RiboPrinting); random amplified polymorphic DNA typing (RAPD); pulsed-field gel electrophoresis (PFGE); restriction fragment length polymorphisms of the flagellin gene, flaA(fla-RFLP); and denaturing gradient gel electrophoresis offlaA (fla-DGGE). The methods were evaluated and compared on the basis of their abilities to identify isolates from one outbreak and discriminate between unrelated isolates and the agreement between methods in identifying clonal lines. All methods identified the outbreak strain. For a collection of 80 supposedly unrelated isolates, RAPD and PFGE were the most discriminatory methods, followed byfla-RFLP and RiboPrinting. fla-DGGE and serotyping were the least discriminative. All isolates included in this study were found to be typeable by each of the methods. Thirteen groups of potentially related isolates could be identified using a criterion that at least four of the methods agreed on clustering of isolates. None of the subtypes could be related to only one source; rather, these groups represented isolates from different sources. Furthermore, in two cases isolates from cattle and human patients were found to be identical according to all six methods.

2018 ◽  
Vol 62 (2) ◽  
pp. 19-29 ◽  
Author(s):  
E. Böhmová ◽  
E. Čonková ◽  
Z. Sihelská ◽  
M. Harčárová

Abstract Yeasts from the genus Malassezia belongs to normal commensal skin flora of warm-blooded vertebrates. These yeasts may act as opportunistic pathogens and cause skin diseases in humans and animals under certain conditions. The identification of Malassezia species is based on the phenotypic or genotypic diagnostics. The methods used for the phenotypic identification is determined by: the growth on Sabouraud agar, growth on selective media (Leeming-Notman agar, Dixon agar, Chrom Malassezia agar), the ability to utilise different concentrations of Tween, monitoring of the growth on CEL agar (soil enriched with castor oil) and TE agar (Tween-esculine agar), and the catalase test. The genotypic identification uses molecular methods like: the pulsed field gel electrophoresis (PFGE), random amplified polymorphic DNA (RAPD), amplified fragment lenght polymorphism (AFLP), denaturing gradient gel electrophoresis (DGGE), and the DNA sequence analysis.


2020 ◽  
Vol 51 (2) ◽  
pp. 125-146
Author(s):  
Nasiruddin Nasiruddin ◽  
Yu Zhangxin ◽  
Ting Zhao Chen Guangying ◽  
Minghui Ji

We grew cucumber in pots in greenhouse for 9-successive cropping cycles and analyzed the rhizosphere Pseudomonas spp. community structure and abundance by PCR-denaturing gradient gel electrophoresis and quantitative PCR. Results showed that continuous monocropping changed the cucumber rhizosphere Pseudomonas spp. community. The number of DGGE bands, Shannon-Wiener index and Evenness index decreased during the 3rd cropping and thereafter, increased up to the 7th cropping, however, however, afterwards they decreased again. The abundance of Pseudomonas spp. increased up to the 5th successive cropping and then decreased gradually. These findings indicated that the structure and abundance of Pseudomonas spp. community changed with long-term cucumber monocropping, which might be linked to soil sickness caused by its continuous monocropping.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Qiufen Li ◽  
Yan Zhang ◽  
David Juck ◽  
Nathalie Fortin ◽  
Charles W. Greer

The impact of intensive land-based fish culture in Qingdao, China, on the bacterial communities in surrounding marine environment was analyzed. Culture-based studies showed that the highest counts of heterotrophic, ammonium-oxidizing, nitrifying, and nitrate-reducing bacteria were found in fish ponds and the effluent channel, with lower counts in the adjacent marine area and the lowest counts in the samples taken from 500 m off the effluent channel. Denaturing gradient gel electrophoresis (DGGE) analysis was used to assess total bacterial diversity. Fewer bands were observed from the samples taken from near the effluent channel compared with more distant sediment samples, suggesting that excess nutrients from the aquaculture facility may be reducing the diversity of bacterial communities in nearby sediments. Phylogenetic analysis of the sequenced DGGE bands indicated that the bacteria community of fish-culture-associated environments was mainly composed of Flavobacteriaceae, gamma- and deltaproteobacteria, including generaGelidibacter, Psychroserpen, Lacinutrix,andCroceimarina.


2003 ◽  
Vol 69 (11) ◽  
pp. 6380-6385 ◽  
Author(s):  
R. Temmerman ◽  
L. Masco ◽  
T. Vanhoutte ◽  
G. Huys ◽  
J. Swings

ABSTRACT The taxonomic characterization of a bacterial community is difficult to combine with the monitoring of its temporal changes. None of the currently available identification techniques are able to visualize a “complete” community, whereas techniques designed for analyzing bacterial ecosystems generally display limited or labor-intensive identification potential. This paper describes the optimization and validation of a nested-PCR-denaturing gradient gel electrophoresis (DGGE) approach for the species-specific analysis of bifidobacterial communities from any ecosystem. The method comprises a Bifidobacterium-specific PCR step, followed by purification of the amplicons that serve as template DNA in a second PCR step that amplifies the V3 and V6-V8 regions of the 16S rRNA gene. A mix of both amplicons is analyzed on a DGGE gel, after which the band positions are compared with a previously constructed database of reference strains. The method was validated through the analysis of four artificial mixtures, mimicking the possible bifidobacterial microbiota of the human and chicken intestine, a rumen, and the environment, and of two fecal samples. Except for the species Bifidobacterium coryneforme and B. indicum, all currently known bifidobacteria originating from various ecosystems can be identified in a highly reproducible manner. Because no further cloning and sequencing of the DGGE bands is necessary, this nested-PCR-DGGE technique can be completed within a 24-h span, allowing the species-specific monitoring of temporal changes in the bifidobacterial community.


Sign in / Sign up

Export Citation Format

Share Document