scholarly journals Species-Specific Identification of Human Adenoviruses by a Multiplex PCR Assay

2000 ◽  
Vol 38 (11) ◽  
pp. 4114-4120 ◽  
Author(s):  
WanHong Xu ◽  
Mike C. McDonough ◽  
Dean D. Erdman

A multiplex PCR assay was developed by using primers to the fiber gene that could differentiate human adenovirus (Ad) species A through F in a single amplification reaction. The assay correctly identified the species of all 49 recognized Ad prototype strains as well as 180 geographically and temporally diverse Ad field isolates. Ad serotype 6 (Ad6) (species C), Ad16 (species B), Ad31 (species A), and Ad40 and Ad41 (species F) could also be distinguished by amplicon size within each respective species. In comparison, a previously described Ad species-specific multiplex PCR assay that used primers to the Ad hexon gene gave equivocal results with several serotypes of species B, whereas our multiplex assay amplified all species B serotypes equally well. Our multiplex PCR assay will permit rapid, accurate, and cost-effective classification of Ad isolates.

2006 ◽  
Vol 75 (2) ◽  
pp. 235-240 ◽  
Author(s):  
A. Dmitriev ◽  
M. Bhide ◽  
I. Mikula

The cpn60 genes of Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis were sequenced and a certain polymorphism of cpn60 genes was revealed. Presumable species-specific pairs of primers were designed and their specificity was confirmed by PCR. Based on these data, the cpn60 gene-based multiplex-PCR assay was developed. It was found to be effective for simultaneous identification of S. agalactiae, S. dysgalactiae and S. uberis strains.


2021 ◽  
pp. 104063872110634
Author(s):  
Barbara Ujvári ◽  
Hubert Gantelet ◽  
Tibor Magyar

The ability to distinguish among the subspecies of Pasteurella multocida isolates is important epidemiologically; however, classification at the subspecies level based on the results of conventional biochemical tests (fermentation of sorbitol and dulcitol) is reportedly not accurate in all cases. Therefore, we developed a rapid, multiplex PCR assay to differentiate among the 3 subspecies of P. multocida. The PCR assay includes the P. multocida species–specific primers KMT1SP6 and KMT1T7 as an internal amplification control, with a newly designed gatD (galactitol-1-phosphate-5-dehydrogenase)-specific primer pair (unique for subsp. gallicida), and primers targeting a 16S rRNA gene region specific for subsp. septica. The subspecies specificity of the PCR was demonstrated by applying the test to a collection of 70 P. multocida isolates, including the Heddleston serovar reference strains; all isolates and strains were assigned correctly. The PCR assay is a sensitive, specific, and highly effective method for the identification of P. multocida subspecies, and an alternative to biochemical test–based differentiation. A possible relationship was noticed between P. multocida subspecies and lipopolysaccharide (LPS) genotype; all but one of the subsp. gallicida strains were isolated only from avian hosts and represented L1 LPS genotype. Subsp. multocida and subsp. septica isolates were classified into 5 and 4 different LPS genotypes, respectively, of which L3 was the only LPS genotype shared between these 2 subspecies.


2015 ◽  
Vol 14 (4) ◽  
pp. 13981-13997 ◽  
Author(s):  
A. Supikamolseni ◽  
N. Ngaoburanawit ◽  
M. Sumontha ◽  
L. Chanhome ◽  
S. Suntrarachun ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Aleksandar Ivezić ◽  
Paul F. Rugman-Jones ◽  
Branislav Trudić

Abstract Background The European corn borer (ECB), Ostrinia nubilalis (Hübner, 1796) (Lepidoptera: Crambidae), is the major pest of maize (Zea mays Linnaeus, 1753) in Serbia. One potential method for managing this pest is the augmentative release of naturally occuring egg parasitoids of the genus Trichogramma. The first step in this process is accurately identifying the naturally occuring species and estimating their natural distribution and abundance. Molecular identification, based on differences in DNA sequences, has commonly been employed for the identification of Trichogramma species. A simple, quick, and accurate molecular assay is urgently required for the identification of two common Trichogramma species, associated with ECB in Serbia: T. brassicae Bezdenko, 1968 and Trichogramma evanescens Westwood, 1833. Such an assay will facilitate an expansive survey of resident populations of Trichogramma associated with ECB across agricultural growing regions of Vojvodina province. Results A species-specific multiplex PCR assay for the 2 species was developed and validated that assay using a sample of 79 parasitoid wasps reared from ECB egg masses collected from sample sites across Vojvodina province. Trichogramma brassicae was confirmed as the dominant egg parasitoid of ECB in this region, accounting for 77 of the 79 wasps (97.47%). The remaining 2 were confirmed as T. evanescens. Trichogramma brassicae was detected at all 12 sample sites, while T. evanescens was detected at only 2 plots, Mokrin and Nakovo. Conclusions The species-specific multiplex PCR assay presented herein can provide the basis of a quick, cheap, and reliable means for identifying the species of Trichogramma that parasitize ECB egg masses in Serbia. Two currently documented species, T. brassicae and T. evanescens, are readily diagnosed by the size of the PCR product they produce in the assay. Any additional species are expected to not produce a band of a diagnostic size. Such species would subsequently be identified by sequencing, which may also allow them to be promptly incorporated into a revised assay.


2016 ◽  
Vol 54 (8) ◽  
pp. 2197-2200 ◽  
Author(s):  
José M. Marimón ◽  
María Ercibengoa ◽  
Erica Santacatterina ◽  
Marta Alonso ◽  
Emilio Pérez-Trallero

For pneumococcal disease surveillance, simple and cost-effective methods capable of determining all serotypes are needed. Combining a single-tube multiplex PCR with fluorescently labeled primers followed by amplicon analysis using automated fluorescent capillary electrophoresis, each serotype of 92 reference isolates and 297 recently collected clinical isolates was successfully determined.


2008 ◽  
Vol 99 (1) ◽  
pp. 41-49 ◽  
Author(s):  
L.L. Koekemoer ◽  
E.A. Misiani ◽  
R.H. Hunt ◽  
R.J. Kent ◽  
D.E. Norris ◽  
...  

AbstractHouse-resting Anopheles mosquitoes are targeted for vector control interventions; however, without proper species identification, the importance of these Anopheles to malaria transmission is unknown. Anopheles longipalpis, a non-vector species, has been found in significant numbers resting indoors in houses in southern Zambia, potentially impacting on the utilization of scarce resources for vector control. The identification of An. longipalpis is currently based on classical morphology using minor characteristics in the adult stage and major ones in the larval stage. The close similarity to the major malaria vector An. funestus led to investigations into the development of a molecular assay for identification of An. longipalpis. Molecular analysis of An. longipalpis from South Africa and Zambia revealed marked differences in size and nucleotide sequence in the second internal transcribed spacer (ITS2) region of ribosomal DNA between these two populations, leading to the conclusion that more than one species was being analysed. Phylogenetic analysis showed the Zambian samples aligned with An. funestus, An. vaneedeni and An. parensis, whereas the South African sample aligned with An. leesoni, a species that is considered to be more closely related to the Asian An. minimus subgroup than to the African An. funestus subgroup. Species-specific primers were designed to be used in a multiplex PCR assay to distinguish between these two cryptic species and members of the An. funestus subgroup for which there is already a multiplex PCR assay.


Sign in / Sign up

Export Citation Format

Share Document