pneumococcal disease
Recently Published Documents


TOTAL DOCUMENTS

2009
(FIVE YEARS 431)

H-INDEX

91
(FIVE YEARS 8)

2022 ◽  
Vol 10 (1) ◽  
pp. 127
Author(s):  
Christian Theilacker ◽  
Mark A. Fletcher ◽  
Luis Jodar ◽  
Bradford D. Gessner

The Community-Acquired Pneumonia immunization Trial in Adults (CAPiTA) evaluated older adult pneumococcal vaccination and was one of the largest vaccine clinical trials ever conducted. Among older adults aged ≥65 years, the trial established 13-valent pneumococcal conjugate vaccine (PCV13) efficacy in preventing first episodes of bacteremic and nonbacteremic pneumococcal vaccine serotype (VT) community acquired pneumonia (CAP), and of vaccine serotype invasive pneumococcal disease (VT-IPD). Since the publication of the original trial results, 15 additional publications have extended the analyses. In this review, we summarize and integrate the full body of evidence generated by these studies, contextualize the results in light of their public health relevance, and discuss their implications for the assessment of current and future adult pneumococcal vaccination. This accumulating evidence has helped to better understand PCV13 efficacy, serotype-specific efficacy, efficacy in subgroups, the interpretation of immunogenicity data, and the public health value of adult PCV vaccination.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261750
Author(s):  
Hanna Rinta-Kokko ◽  
Arto A. Palmu ◽  
Esa Ruokokoski ◽  
Heta Nieminen ◽  
Marta Moreira ◽  
...  

Background In the nation-wide double-blind cluster-randomised Finnish Invasive Pneumococcal disease trial (FinIP, ClinicalTrials.gov NCT00861380, NCT00839254), we assessed the indirect impact of the 10-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) against five pneumococcal disease syndromes. Methods Children 6 weeks to 18 months received PHiD-CV10 in 48 clusters or hepatitis B/A-vaccine as control in 24 clusters according to infant 3+1/2+1 or catch-up schedules in years 2009―2011. Outcome data were collected from national health registers and included laboratory-confirmed and clinically suspected invasive pneumococcal disease (IPD), hospital-diagnosed pneumonia, tympanostomy tube placements (TTP) and outpatient antimicrobial prescriptions. Incidence rates in the unvaccinated population in years 2010―2015 were compared between PHiD-CV10 and control clusters in age groups <5 and ≥5 years (5―7 years for TTP and outpatient antimicrobial prescriptions), and in infants <3 months. PHiD-CV10 was introduced into the Finnish National Vaccination Programme (PCV-NVP) for 3-month-old infants without catch-up in 9/2010. Results From 2/2009 to 10/2010, 45398 children were enrolled. Vaccination coverage varied from 29 to 61% in PHiD-CV10 clusters. We detected no clear differences in the incidence rates between the unvaccinated cohorts of the treatment arms, except in single years. For example, the rates of vaccine-type IPD, non-laboratory-confirmed IPD and empyema were lower in PHiD-CV10 clusters compared to control clusters in 2012, 2015 and 2011, respectively, in the age-group ≥5 years. Conclusions This is the first report from a clinical trial evaluating the indirect impact of a PCV against clinical outcomes in an unvaccinated population. We did not observe consistent indirect effects in the PHiD-CV10 clusters compared to the control clusters. We consider that the sub-optimal trial vaccination coverage did not allow the development of detectable indirect effects and that the supervening PCV-NVP significantly diminished the differences in PHiD-CV10 vaccination coverage between the treatment arms.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262225
Author(s):  
Sweta M. Patel ◽  
Yazdani B. Shaik-Dasthagirisaheb ◽  
Morgan Congdon ◽  
Rebecca R. Young ◽  
Mohamed Z. Patel ◽  
...  

Pneumococcal conjugate vaccines reduce the burden of invasive pneumococcal disease, but the sustained effect of these vaccines can be diminished by an increase in disease caused by non-vaccine serotypes. To describe pneumococcal serotype epidemiology in Botswana following introduction of 13-valent pneumococcal conjugate vaccine (PCV-13) in July 2012, we performed molecular serotyping of 268 pneumococcal strains isolated from 221 children between 2012 and 2017. The median (interquartile range) age of the children included in this analysis was 6 (3,12) months. Fifty-nine percent of the children had received at least one dose of PCV-13 and 35% were fully vaccinated with PCV-13. While colonization by vaccine serotypes steadily declined following PCV-13 introduction, 25% of strains isolated more than 3 years after vaccine introduction were PCV-13 serotypes. We also observed an increase in colonization by non-vaccine serotypes 21 and 23B, which have been associated with invasive pneumococcal disease and antibiotic resistance in other settings.


2022 ◽  
Vol 67 (4) ◽  
pp. 289-298
Author(s):  
Saad Alghamdi ◽  
Muhammad Umar Khayam Sahibzada ◽  
Nashwa T. Shesha ◽  
Akhmed Aslam ◽  
Ahmed Kabrah ◽  
...  

Streptococcus pneumoniae is the bacterium that causes pneumococcal disease which often results in pneumonia, meningitis, otitis media, septicemia and sinusitis. Pneumonia, particularly, is a significant cause of worldwide morbidity and a global health burden as well. Treatment often relies on antimicrobials, to which the pathogen is frequently mutating and rendering infective. Consequently, vaccination is the most effective approach in dealing with pneumococcal antimicrobial resistance (AMR). Unfortunately, the current pneumococcal polysaccharide and conjugate vaccines have a narrow serotype coverage. Therefore, the current need for vaccines with a broader serotype coverage cannot be overstated. Pneumococcal Surface Protein A and C are potential vaccine candidate antigens present in over 90% of the strains from clinical isolates as well as laboratory non-encapsulated strains. Pneumococcal Surface Protein A is an active virulent factor that pneumococci use to evade complement-mediated host immune responses and has been shown to elicit immune responses against pneumococcal infections. This review explores the potential utilization of Pneumococcal Surface Protein A to immunize against S. pneumoniae.


2022 ◽  
Vol 17 (1) ◽  
pp. 29-32
Author(s):  
Akane Kuroki ◽  
Kei Takamura ◽  
Machiko Sasaki ◽  
Hajime Kikichi ◽  
Makoto Yamamoto

2021 ◽  
Vol 2 ◽  
Author(s):  
Manmeet Bhalla ◽  
Roozbeh Nayerhoda ◽  
Essi Y. I. Tchalla ◽  
Alexsandra Abamonte ◽  
Dongwon Park ◽  
...  

Despite the availability of licensed vaccines, pneumococcal disease caused by the bacteria Streptococcus pneumoniae (pneumococcus), remains a serious infectious disease threat globally. Disease manifestations include pneumonia, bacteremia, and meningitis, resulting in over a million deaths annually. Pneumococcal disease disproportionally impacts older adults aged ≥65 years. Interventions are complicated through a combination of complex disease progression and 100 different bacterial capsular polysaccharide serotypes. This has made it challenging to develop a broad vaccine against S. pneumoniae, with current options utilizing capsular polysaccharides as the primary antigenic content. However, current vaccines are substantially less effective in protecting the elderly. We previously developed a Liposomal Encapsulation of Polysaccharides (LEPS) vaccine platform, designed around limitations of current pneumococcal vaccines, that allowed the non-covalent coupling of polysaccharide and protein antigen content and protected young hosts against pneumococcal infection in murine models. In this study, we modified the formulation to make it more economical and tested the novel LEPS vaccine in aged hosts. We found that in young mice (2–3 months), LEPS elicited comparable responses to the pneumococcal conjugate vaccine Prevnar-13. Further, LEPS immunization of old mice (18–22 months) induced comparable antibody levels and improved antibody function compared to Prevnar-13. Importantly, LEPS protected old mice against both invasive and lung localized pneumococcal infections. In summary, LEPS is an alternative and effective vaccine strategy that protects aged hosts against different manifestations of pneumococcal disease.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1507
Author(s):  
Hyobin Im ◽  
Jinhui Ser ◽  
Uk Sim ◽  
Hoonsung Cho

The emergence of new viral infections has increased over the decades. The novel virus is one such pathogen liable for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, popularly known as coronavirus disease 2019 (COVID-19). Most fatalities during the past century’s influenza pandemics have cooperated with bacterial co/secondary infections. Unfortunately, many reports have claimed that bacterial co-infection is also predominant in COVID-19 patients (COVID-19 associated co/secondary infection prevalence is up to 45.0%). In the COVID-19 pandemic, Streptococcus pneumoniae is the most common coinfecting pathogen. Half of the COVID-19 mortality cases showed co-infection, and pneumonia-related COVID-19 mortality in patients >65 years was 23%. The weakening of immune function caused by COVID-19 remains a high-risk factor for pneumococcal disease. Pneumococcal disease and COVID-19 also have similar risk factors. For example, underlying medical conditions on COVID-19 and pneumococcal diseases increase the risk for severe illness at any age; COVID-19 is now considered a primary risk factor for pneumococcal pneumonia and invasive pneumococcal disease. Thus, pneumococcal vaccination during the COVID-19 pandemic has become more critical than ever. This review presents positive studies of pneumococcal vaccination in patients with COVID-19 and other medical conditions and the correlational effects of pneumococcal disease with COVID-19 to prevent morbidity and mortality from co/secondary infections and superinfections. It also reports the importance and role of pneumococcal vaccination during the current COVID-19 pandemic era to strengthen the global health system.


Sign in / Sign up

Export Citation Format

Share Document