scholarly journals Molecular Epidemiology of Penicillin-NonsusceptibleStreptococcus pneumoniae among Children in Greece

2000 ◽  
Vol 38 (12) ◽  
pp. 4361-4366 ◽  
Author(s):  
Debby Bogaert ◽  
George A. Syrogiannopoulos ◽  
Ioanna N. Grivea ◽  
Ronald de Groot ◽  
Nicholas G. Beratis ◽  
...  

A total of 145 penicillin-nonsusceptible Streptococcus pneumoniae strains were isolated from young carriers in Greece and analyzed by antibiotic susceptibility testing, serotyping, restriction fragment end labeling (RFEL), and penicillin-binding protein (PBP) genotyping. The serotypes 23A and 23F (54%), 19A and 19F (25%), 9V (5%), 15A, 15B, and 15C (4%), 6A and 6B (4%), and 21 (4%) were most prevalent in this collection. Fifty-three distinct RFEL types were identified. Sixteen different RFEL clusters, harboring 2 to 32 strains each, accounted for 82% of all strains. Eight of these genetic clusters representing 60% of the strains were previously identified in other countries. A predominant lineage of 66 strains (46%) harboring five RFEL types and the serotypes 19F and 23F was closely related to the pandemic clone Spain23F-1 (genetic relatedness of ≥85%). Another lineage, representing 11 strains, showed close genetic relatedness to the pandemic clone France9V-3. Another lineage of 8 serotype 21 strains was Greece specific since the RFEL types were not observed in an international collection of 193 genotypes from 16 different countries. Characterization of the PBP genes pbp1a, pbp2b, and pbp2x revealed 20 distinct PBP genotypes of which PBP type 1-1-1, initially observed in the pandemic clones 23F and 9V, was predominantly present in 11 RFEL types in this Greek collection of penicillin-nonsusceptible strains (55%). Sixteen PBP types covering 52 strains (36%) were Greece specific. This study underlines the strong contribution of penicillin-resistant international clones to the prevalence and spread of penicillin-nonsusceptible pneumococci among young children in Greece.

ACS Omega ◽  
2021 ◽  
Author(s):  
Armelle Novelli Rousseau ◽  
Nicolas Faure ◽  
Fabian Rol ◽  
Zohreh Sedaghat ◽  
Joël Le Galudec ◽  
...  

2020 ◽  
Vol 41 (S1) ◽  
pp. s42-s43
Author(s):  
Kimberley Sukhum ◽  
Candice Cass ◽  
Meghan Wallace ◽  
Caitlin Johnson ◽  
Steven Sax ◽  
...  

Background: Healthcare-associated infections caused by antibiotic-resistant organisms (AROs) are a major cause of significant morbidity and mortality. To create and optimize infection prevention strategies, it is crucial to delineate the role of the environment and clinical infections. Methods: Over a 14-month period, we collected environmental samples, patient feces, and patient bloodstream infection (BSI) isolates in a newly built bone marrow transplant (BMT) intensive care unit (ICU). Samples were collected from 13 high-touch areas in the patient room and 4 communal areas. Samples were collected from the old BMT ICU, in the new BMT ICU before patients moved in, and for 1 year after patients moved in. Selective microbiologic culture was used to isolate AROs, and whole-genome sequencing (WGS) was used to determine clonality. Antibiotic susceptibility testing was performed using Kirby-Bauer disk diffusion assays. Using linear mixed modeling, we compared ARO recovery across time and sample area. Results: AROs were collected and cultured from environmental samples, patient feces, and BSI isolates (Fig. 1a). AROs were found both before and after a patient entered the ICU (Fig. 1b). Sink drains had significantly more AROs recovered per sample than any other surface area (P < .001) (Fig. 1c). The most common ARO isolates were Pseudomonas aeruginosa and Stenotrophomonas maltophila (Fig. 1d). The new BMT ICU had fewer AROs recovered per sample than the old BMT ICU (P < .001) and no increase in AROs recovered over the first year of opening (P > .05). Furthermore, there was no difference before versus after patients moved into the hospital (P > .05). Antibiotic susceptibility testing reveal that P. aeruginosa isolates recovered from the old ICU were resistant to more antibiotics than isolates recovered from the new ICU (Fig. 2a). ANI and clonal analyses of P. aeruginosa revealed a large cluster of clonal isolates (34 of 76) (Fig. 2b). This clonal group included isolates found before patients moved into the BMT ICU and patient blood isolates. Furthermore, this clonal group was initially found in only 1 room in the BMT ICU, and over 26 weeks, it was found in sink drains in all 6 rooms sampled (Fig. 2b). Conclusions: AROs are present before patients move into a new BMT ICU, and sink drains act as a reservoir for AROs over time. Furthermore, sink-drain P. aeruginosa isolates are clonally related to isolates found in patient BSIs. Overall, these results provide insight into ARO transmission dynamics in the hospital environment.Funding: Research reported in this publication was supported by the Washington University Institute of Clinical and Translational Sciences grant UL1TR002345 from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH.Disclosures: None


1976 ◽  
Vol 10 (3) ◽  
pp. 436-440 ◽  
Author(s):  
M. B. Coyle ◽  
M. F. Lampe ◽  
C. L. Aitken ◽  
P. Feigl ◽  
J. C. Sherris

2003 ◽  
Vol 127 (2) ◽  
pp. 224-226 ◽  
Author(s):  
Rebecca F. Yorke ◽  
Emilie Rouah

Abstract The identification of Nocardia transvalensis, an unusual and probably underrecognized cause of nocardial infection, is clinically significant because of this species' resistance to aminoglycosides, a standard antinocardial therapy. Diagnosis requires analytic methods available predominately in reference laboratories. We report a case of disseminated infection with N transvalensis with primary pulmonary involvement and subsequent development of brain abscesses, and review the literature to date. Familiarity with the epidemiology, pathologic findings, and clinical significance of this and other unusual Nocardia species may increase early identification and antibiotic susceptibility testing in cases of nocardial infection.


2017 ◽  
Vol 22 (6) ◽  
pp. 585-608 ◽  
Author(s):  
Yiyan Li ◽  
Xing Yang ◽  
Weian Zhao

Rapid bacterial identification (ID) and antibiotic susceptibility testing (AST) are in great demand due to the rise of drug-resistant bacteria. Conventional culture-based AST methods suffer from a long turnaround time. By necessity, physicians often have to treat patients empirically with antibiotics, which has led to an inappropriate use of antibiotics, an elevated mortality rate and healthcare costs, and antibiotic resistance. Recent advances in miniaturization and automation provide promising solutions for rapid bacterial ID/AST profiling, which will potentially make a significant impact in the clinical management of infectious diseases and antibiotic stewardship in the coming years. In this review, we summarize and analyze representative emerging micro- and nanotechnologies, as well as automated systems for bacterial ID/AST, including both phenotypic (e.g., microfluidic-based bacterial culture, and digital imaging of single cells) and molecular (e.g., multiplex PCR, hybridization probes, nanoparticles, synthetic biology tools, mass spectrometry, and sequencing technologies) methods. We also discuss representative point-of-care (POC) systems that integrate sample processing, fluid handling, and detection for rapid bacterial ID/AST. Finally, we highlight major remaining challenges and discuss potential future endeavors toward improving clinical outcomes with rapid bacterial ID/AST technologies.


Sign in / Sign up

Export Citation Format

Share Document