scholarly journals Laboratory Exercise to Measure Plasmid Copy Number by qPCR

Author(s):  
Benjamin David ◽  
Jinbei Li ◽  
Faisal Masood ◽  
Caroline Blassick ◽  
Paul Jensen ◽  
...  

Quantitative PCR (qPCR) has numerous applications in biology. In an education setting, qPCR provides students an opportunity to better understand the PCR mechanism by providing both quantitative information about the reactions and also data to troubleshoot PCRs (e.g., melt curves). Here, we present a relatively short (2-h) laboratory activity to demonstrate qPCR to quantify plasmid copy number (CN) by measuring the cycle threshold ( C T ) values for a genomic gene and a plasmid gene using transformed cells as a template. The activity can be combined with additional laboratory exercises, including bacterial transformation, to create the template to be used in the qPCRs. This lab activity is ideal for undergraduate laboratory courses that include recombinant DNA technology.

2018 ◽  
Vol 36 (3) ◽  
pp. 472-486 ◽  
Author(s):  
Judith Ilhan ◽  
Anne Kupczok ◽  
Christian Woehle ◽  
Tanita Wein ◽  
Nils F Hülter ◽  
...  

2010 ◽  
Vol 81 (1) ◽  
Author(s):  
Jérôme Wong Ng ◽  
Didier Chatenay ◽  
Jérôme Robert ◽  
Michael Guy Poirier

2013 ◽  
Vol 57 (4) ◽  
pp. 1850-1856 ◽  
Author(s):  
L. C. Cook ◽  
G. M. Dunny

ABSTRACTBiofilm growth causes increased average plasmid copy number as well as increased copy number heterogeneity inEnterococcus faecaliscells carrying plasmid pCF10. In this study, we examined whether biofilm growth affected the copy number and expression of antibiotic resistance determinants for several plasmids with diverse replication systems. Four differentE. faecalisplasmids, unrelated to pCF10, demonstrated increased copy number in biofilm cells. In biofilm cells, we also observed increased transcription of antibiotic resistance genes present on these plasmids. The increase in plasmid copy number correlated with increased plating efficiency on high concentrations of antibiotics. Single-cell analysis of strains carrying two different plasmids suggested that the increase in plasmid copy number associated with biofilm growth was restricted to a subpopulation of biofilm cells. Regrowth of harvested biofilm cells in liquid culture resulted in a rapid reduction of plasmid copy number to that observed in the planktonic state. These results suggest a possible mechanism by which biofilm growth could reduce susceptibility to antibiotics in clinical settings.


PLoS ONE ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. e16025 ◽  
Author(s):  
Chunying Zhong ◽  
Donghai Peng ◽  
Weixing Ye ◽  
Lujun Chai ◽  
Junliang Qi ◽  
...  

2006 ◽  
Vol 123 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Changsoo Lee ◽  
Jaai Kim ◽  
Seung Gu Shin ◽  
Seokhwan Hwang

Sign in / Sign up

Export Citation Format

Share Document