scholarly journals Erratum for Saha et al., Atrans-Dominant Form of Gag Restricts Ty1 Retrotransposition and Mediates Copy Number Control

2016 ◽  
Vol 90 (10) ◽  
pp. 5210-5210
Author(s):  
Agniva Saha ◽  
Jessica A. Mitchell ◽  
Yuri Nishida ◽  
Jonathan E. Hildreth ◽  
Joshua A. Arribere ◽  
...  
2015 ◽  
Vol 89 (7) ◽  
pp. 3922-3938 ◽  
Author(s):  
Agniva Saha ◽  
Jessica A. Mitchell ◽  
Yuri Nishida ◽  
Jonathan E. Hildreth ◽  
Joshua A. Ariberre ◽  
...  

ABSTRACTSaccharomyces cerevisiaeandSaccharomyces paradoxuslack the conserved RNA interference pathway and utilize a novel form of copy number control (CNC) to inhibit Ty1 retrotransposition. Although noncoding transcripts have been implicated in CNC, here we present evidence that a truncated form of the Gag capsid protein (p22) or its processed form (p18) is necessary and sufficient for CNC and likely encoded by Ty1 internal transcripts. Coexpression of p22/p18 and Ty1 decreases mobility more than 30,000-fold. p22/p18 cofractionates with Ty1 virus-like particles (VLPs) and affects VLP yield, protein composition, and morphology. Although p22/p18 and Gag colocalize in the cytoplasm, p22/p18 disrupts sites used for VLP assembly. GlutathioneS-transferase (GST) affinity pulldowns also suggest that p18 and Gag interact. Therefore, this intrinsic Gag-like restriction factor confers CNC by interfering with VLP assembly and function and expands the strategies used to limit retroelement propagation.IMPORTANCERetrotransposons dominate the chromosomal landscape in many eukaryotes, can cause mutations by insertion or genome rearrangement, and are evolutionarily related to retroviruses such as HIV. Thus, understanding factors that limit transposition and retroviral replication is fundamentally important. The present work describes a retrotransposon-encoded restriction protein derived from the capsid gene of the yeast Ty1 element that disrupts virus-like particle assembly in a dose-dependent manner. This form of copy number control acts as a molecular rheostat, allowing high levels of retrotransposition when few Ty1 elements are present and inhibiting transposition as copy number increases. Thus, yeast and Ty1 have coevolved a form of copy number control that is beneficial to both “host and parasite.” To our knowledge, this is the first Gag-like retrotransposon restriction factor described in the literature and expands the ways in which restriction proteins modulate retroelement replication.


Genetics ◽  
2003 ◽  
Vol 165 (1) ◽  
pp. 83-99
Author(s):  
David J Garfinkel ◽  
Katherine Nyswaner ◽  
Jun Wang ◽  
Jae-Yong Cho

Abstract To determine whether homology-dependent gene silencing or cosuppression mechanisms underlie copy number control (CNC) of Ty1 retrotransposition, we introduced an active Ty1 element into a naïve strain. Single Ty1 element retrotransposition was elevated in a Ty1-less background, but decreased dramatically when additional elements were present. Transcription from the suppressing Ty1 elements enhanced CNC but translation or reverse transcription was not required. Ty1 CNC occurred with a transcriptionally active Ty2 element, but not with Ty3 or Ty5 elements. CNC also occurred when the suppressing Ty1 elements were transcriptionally silenced, fused to the constitutive PGK1 promoter, or contained a minimal segment of mostly TYA1-gag sequence. Ty1 transcription of a multicopy element expressed from the GAL1 promoter abolished CNC, even when the suppressing element was defective for transposition. Although Ty1 RNA and TyA1-gag protein levels increased with the copy number of expressible elements, a given element's transcript level varied less than twofold regardless of whether the suppressing elements were transcriptionally active or repressed. Furthermore, a decrease in the synthesis of Ty1 cDNA is strongly associated with Ty1 CNC. Together our results suggest that Ty1 cosuppression can occur post-transcriptionally, either prior to or during reverse transcription.


1985 ◽  
pp. 173-188 ◽  
Author(s):  
Richard J. Meyer ◽  
Lung-Shen Lin ◽  
Kyunghoon Kim ◽  
Michael A. Brasch

2018 ◽  
Vol 2 (2) ◽  
pp. 73
Author(s):  
Naida Lojo-Kadric ◽  
Zelija Velija Asimi ◽  
Jasmin Ramic ◽  
Ksenija Radic ◽  
Lejla Pojskic

MODY (maturity-onset diabetes of the young) is an autosomal dominant form of diabetes that is usually manifested before the 25-year of life. This type of diabetes is caused by defects in the primary insulin secretion. There are several types of MODY, which are monogenic diseases, where mutations in a single gene are responsible for a particular type of MODY. Currently, there are eleven types of MODY, from which the most common types are MODY 2 and MODY 3 (with mutations on GCK and HNF1A genes, respectively). We identified very rare MODY 7 type of diabetes in three family members by MLPA analysis.


PLoS Genetics ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. e1008193 ◽  
Author(s):  
Chien-Hui Ma ◽  
Bo-Yu Su ◽  
Anna Maciaszek ◽  
Hsiu-Fang Fan ◽  
Piotr Guga ◽  
...  

2003 ◽  
Vol 23 (22) ◽  
pp. 8352-8362 ◽  
Author(s):  
Thomas Zobel ◽  
Thomas Iftner ◽  
Frank Stubenrauch

ABSTRACT Carcinogenic DNA viruses such as high-risk human papillomaviruses (HPV) and Epstein-Barr-Virus (EBV) replicate during persistent infections as low-copy-number plasmids. EBV DNA replication is restricted by host cell replication licensing mechanisms. In contrast, copy number control of HPV genomes is not under cellular control but involves the viral sequence-specific DNA-binding E2 activator and E8∧E2C repressor proteins. Analysis of HPV31 mutant genomes revealed that residues outside of the DNA-binding/dimerization domain of E8∧E2C limit viral DNA replication, indicating that binding site competition or heterodimerization among E2 and E8∧E2C proteins does not contribute to copy number control. Domain swap experiments demonstrated that the amino-terminal 21 amino acids of E8∧E2C represent a novel, transferable DNA replication repressor domain, whose activity requires conserved lysine and tryptophan residues. Furthermore, E8∧E2C(1-21)-GAL4 fusion proteins inhibited the replication of the plasmid origin of replication of EBV, suggesting that E8∧E2C functions as a general replication repressor of extrachromosomal origins. This finding could be important for the development of novel therapies against persistent DNA tumor virus infections.


1995 ◽  
Vol 246 (4) ◽  
pp. 472-485 ◽  
Author(s):  
M. Ehrenberg ◽  
A. Sverredal

Sign in / Sign up

Export Citation Format

Share Document