scholarly journals Insertion of a Multibasic Cleavage Motif into the Hemagglutinin of a Low-Pathogenic Avian Influenza H6N1 Virus Induces a Highly Pathogenic Phenotype

2010 ◽  
Vol 84 (16) ◽  
pp. 7953-7960 ◽  
Author(s):  
Vincent J. Munster ◽  
Eefje J. A. Schrauwen ◽  
Emmie de Wit ◽  
Judith M. A. van den Brand ◽  
Theo M. Bestebroer ◽  
...  

ABSTRACT The highly pathogenic avian influenza (HPAI) virus phenotype is restricted to influenza A viruses of the H5 and H7 hemagglutinin (HA) subtypes. To obtain more information on the apparent subtype-specific nature of the HPAI virus phenotype, a low-pathogenic avian influenza (LPAI) H6N1 virus was generated, containing an HPAI H5 RRRKKR↓G multibasic cleavage site (MBCS) motif in HA (the downward arrow indicates the site of cleavage). This insertion converted the LPAI virus phenotype into an HPAI virus phenotype in vitro and in vivo. The H6N1 virus with an MBCS displayed in vitro characteristics similar to those of HPAI H5 viruses, such as cleavage of HA0 (the HA protein of influenza A virus initially synthesized as a single polypeptide precursor) and virus replication in the absence of exogenous trypsin. Studies of chickens confirmed the HPAI phenotype of the H6N1 virus with an MBCS, with an intravenous pathogenicity index of 1.4 and systemic virus replication upon intranasal inoculation, the hallmarks of HPAI viruses. This study provides evidence that the subtype-specific nature of the emergence of HPAI viruses is not at the molecular, structural, or functional level, since the introduction of an MBCS resulted in a fully functional virus with an HPAI virus genotype and phenotype.

2016 ◽  
Vol 90 (23) ◽  
pp. 10936-10944 ◽  
Author(s):  
Xiangjie Sun ◽  
Jessica A. Belser ◽  
Joanna A. Pulit-Penaloza ◽  
Hui Zeng ◽  
Amanda Lewis ◽  
...  

ABSTRACTAvian influenza A H7 viruses have caused multiple outbreaks in domestic poultry throughout North America, resulting in occasional infections of humans in close contact with affected birds. In early 2016, the presence of H7N8 highly pathogenic avian influenza (HPAI) viruses and closely related H7N8 low-pathogenic avian influenza (LPAI) viruses was confirmed in commercial turkey farms in Indiana. These H7N8 viruses represent the first isolation of this subtype in domestic poultry in North America, and their virulence in mammalian hosts and the potential risk for human infection are largely unknown. In this study, we assessed the ability of H7N8 HPAI and LPAI viruses to replicatein vitroin human airway cells andin vivoin mouse and ferret models. Both H7N8 viruses replicated efficientlyin vitroandin vivo, but they exhibited substantial differences in disease severity in mammals. In mice, while the H7N8 LPAI virus largely remained avirulent, the H7N8 HPAI virus exhibited greater infectivity, virulence, and lethality. Both H7N8 viruses replicated similarly in ferrets, but only the H7N8 HPAI virus caused moderate weight loss, lethargy, and mortality. The H7N8 LPAI virus displayed limited transmissibility in ferrets placed in direct contact with an inoculated animal, while no transmission of H7N8 HPAI virus was detected. Our results indicate that the H7N8 avian influenza viruses from Indiana are able to replicate in mammals and cause severe disease but with limited transmission. The recent appearance of H7N8 viruses in domestic poultry highlights the need for continued influenza surveillance in wild birds and close monitoring of the potential risk to human health.IMPORTANCEH7 influenza viruses circulate in wild birds in the United States, but when the virus emerges in domestic poultry populations, the frequency of human exposure and the potential for human infections increases. An H7N8 highly pathogenic avian influenza (HPAI) virus and an H7N8 low-pathogenic avian influenza (LPAI) virus were recently isolated from commercial turkey farms in Indiana. To determine the risk that these influenza viruses pose to humans, we assessed their pathogenesis and transmissionin vitroand in mammalian models. We found that the H7N8 HPAI virus exhibited enhanced virulence, and although transmission was only observed with the H7N8 LPAI virus, the ability of this H7 virus to transmit in a mammalian host and quickly evolve to a more virulent strain is cause for concern. Our findings offer important insight into the potential for emerging H7 avian influenza viruses to acquire the ability to cause disease and transmit among mammals.


2021 ◽  
Vol 1 (2) ◽  
pp. 7-10
Author(s):  
Amal Essalah-Bennani ◽  
Asma Fagrach ◽  
Abderrazak El Khantour ◽  
Ouafaa Fassi Fihri ◽  
Moncef Bouzouaia ◽  
...  

Co-infection with low pathogenic avian influenza virus (LPAIV) H9N2 and Newcastle disease virus (NDV) has become a worrying concern for the poultry industry. The problem arises when the hidden virus influences the replication of another suspected virus. Subsequently, misdiagnosis of the actual cause may be ended up as a source of contamination for the other healthy flocks by the spread of the covered-up virus. In this preliminary study, we determined the potential impact of concurrent infection with H9N2 and avirulent NDV (Lasota) on the virus replication in Specific Pathogen-Free embryonated chicken egg (SPF-ECE) model. Assessment of the potential interference phenomena was carried out based on embryonic lesions, mortalities, and virus replication using real-time PCR. Our results showed that H9N2 interferes with LaSota growth, regardless of which infection occurred first. Our obtained preliminary results are a call for scientists to study the interference between LPAIV H9N2 and NDV both in-vivo and in-vitro in more detail.


2018 ◽  
Vol 93 (1) ◽  
Author(s):  
Elizabeth J. Fay ◽  
Stephanie L. Aron ◽  
Ian A. Stone ◽  
Barbara M. Waring ◽  
Richard K. Plemper ◽  
...  

ABSTRACT Influenza A virus (IAV) remains a global health concern despite the availability of a seasonal vaccine. It is difficult to predict which strains will circulate during influenza season, and therefore, it is extremely challenging to test novel vaccines in the human population. To overcome this obstacle, new vaccines must be tested in challenge studies. This approach poses significant safety problems, since current pharmacological interventions for IAV are poorly efficacious. New methods are needed to enhance the safety of these challenge studies. In this study, we have generated a virus expressing a small-molecule-assisted shutoff (SMASh) tag as a safety switch for IAV replication. The addition of the SMASh tag to an essential IAV protein allows for small-molecule-mediated inhibition of replication. Treatment with this drug controls the replication of a SMASh-tagged virus in vitro and in vivo. This model for restriction of viral replication has potential for broad applications in vaccine studies, virotherapy, and basic virus research. IMPORTANCE Influenza A virus (IAV) causes significant morbidity and mortality annually worldwide, despite the availability of new formulations of the vaccine each season. There is a critical need to develop more-efficacious vaccines. However, testing novel vaccines in the human population in controlled studies is difficult due to the limited availability and efficacy of intervention strategies should the vaccine fail. There are also significant safety concerns for work with highly pathogenic IAV strains in the laboratory. Therefore, novel strategies are needed to improve the safety of vaccine studies and of research on highly pathogenic IAV. In this study, we developed an IAV strain engineered to contain a small-molecule-mediated safety switch. This tag, when attached to an essential viral protein, allows for the regulation of IAV replication in vitro and in vivo. This strategy provides a platform for the regulation of virus replication without targeting viral proteins directly.


2013 ◽  
Vol 94 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Sébastien M. Soubies ◽  
Thomas W. Hoffmann ◽  
Guillaume Croville ◽  
Thibaut Larcher ◽  
Mireille Ledevin ◽  
...  

Highly pathogenic avian influenza (HPAI) H7N1 viruses caused a series of epizootics in Italy between 1999 and 2001. The emergence of these HPAI viruses coincided with the deletion of the six amino acids R225VESEV230 at the C terminus of NS1. In order to assess how the truncation of NS1 affected virus replication, we used reverse genetics to generate a wild-type low-pathogenic avian influenza (LPAI) H7N1 virus with a 230aa NS1 (H7N1230) and a mutant virus with a truncated NS1 (H7N1224). The 6aa truncation had no impact on virus replication in duck or chicken cells in vitro. The H7N1230 and H7N1224 viruses also replicated to similar levels and induced similar immune responses in ducks or chickens. No significant histological lesions were detected in infected ducks, regardless of the virus inoculated. However, in chickens, the H7N1230 virus induced a more severe interstitial pneumonia than did the H7N1224 virus. These findings indicate that the C-terminal extremity of NS1, including the PDZ-binding motif ESEV, is dispensable for efficient replication of an LPAI virus in ducks and chickens, even though it may increase virulence in chickens, as revealed by the intensity of the histological lesions.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Knut Madslien ◽  
Torfinn Moldal ◽  
Britt Gjerset ◽  
Sveinn Gudmundsson ◽  
Arne Follestad ◽  
...  

Abstract Background Several outbreaks of highly pathogenic avian influenza (HPAI) caused by influenza A virus of subtype H5N8 have been reported in wild birds and poultry in Europe during autumn 2020. Norway is one of the few countries in Europe that had not previously detected HPAI virus, despite widespread active monitoring of both domestic and wild birds since 2005. Results We report detection of HPAI virus subtype H5N8 in a wild pink-footed goose (Anser brachyrhynchus), and several other geese, ducks and a gull, from south-western Norway in November and December 2020. Despite previous reports of low pathogenic avian influenza (LPAI), this constitutes the first detections of HPAI in Norway. Conclusions The mode of introduction is unclear, but a northward migration of infected geese or gulls from Denmark or the Netherlands during the autumn of 2020 is currently our main hypothesis for the introduction of HPAI to Norway. The presence of HPAI in wild birds constitutes a new, and ongoing, threat to the Norwegian poultry industry, and compliance with the improved biosecurity measures on poultry farms should therefore be ensured. [MK1]Finally, although HPAI of subtype H5N8 has been reported to have very low zoonotic potential, this is a reminder that HPAI with greater zoonotic potential in wild birds may pose a threat in the future. [MK1]Updated with a sentence emphasizing the risk HPAI pose to poultry farms, both in the Abstract and in the Conclusion-section in main text, as suggested by Reviewer 1 (#7).


2015 ◽  
Vol 64 (1) ◽  
pp. 144-156 ◽  
Author(s):  
N. Haider ◽  
K. Sturm-Ramirez ◽  
S. U. Khan ◽  
M. Z. Rahman ◽  
S. Sarkar ◽  
...  

2015 ◽  
Vol 21 (5) ◽  
pp. 775-780 ◽  
Author(s):  
Hye-Ryoung Kim ◽  
Yong-Kuk Kwon ◽  
Il Jang ◽  
Youn-Jeong Lee ◽  
Hyun-Mi Kang ◽  
...  

2021 ◽  
Author(s):  
Pierre Bessière ◽  
Thomas Figueroa ◽  
Amelia Coggon ◽  
Charlotte Foret-Lucas ◽  
Alexandre Houffschmitt ◽  
...  

Highly pathogenic avian influenza viruses (HPAIV) emerge from low pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse-genetics engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8 LP increased H5N8 HP replication and pathogenesis. By contrast, the H5N8 LP antagonized H5N8 HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8 LP , which correlated with H5N8 HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variants interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between highly and low pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention and they underscore the importance of within-host viral variants interactions in virus evolution.


Sign in / Sign up

Export Citation Format

Share Document