Interference between low pathogenic avian influenza H9N2 and avirulent Newcastle diseases viruses in embryonated Specific Pathogen-Free chicken eggs

2021 ◽  
Vol 1 (2) ◽  
pp. 7-10
Author(s):  
Amal Essalah-Bennani ◽  
Asma Fagrach ◽  
Abderrazak El Khantour ◽  
Ouafaa Fassi Fihri ◽  
Moncef Bouzouaia ◽  
...  

Co-infection with low pathogenic avian influenza virus (LPAIV) H9N2 and Newcastle disease virus (NDV) has become a worrying concern for the poultry industry. The problem arises when the hidden virus influences the replication of another suspected virus. Subsequently, misdiagnosis of the actual cause may be ended up as a source of contamination for the other healthy flocks by the spread of the covered-up virus. In this preliminary study, we determined the potential impact of concurrent infection with H9N2 and avirulent NDV (Lasota) on the virus replication in Specific Pathogen-Free embryonated chicken egg (SPF-ECE) model. Assessment of the potential interference phenomena was carried out based on embryonic lesions, mortalities, and virus replication using real-time PCR. Our results showed that H9N2 interferes with LaSota growth, regardless of which infection occurred first. Our obtained preliminary results are a call for scientists to study the interference between LPAIV H9N2 and NDV both in-vivo and in-vitro in more detail.

2010 ◽  
Vol 84 (16) ◽  
pp. 7953-7960 ◽  
Author(s):  
Vincent J. Munster ◽  
Eefje J. A. Schrauwen ◽  
Emmie de Wit ◽  
Judith M. A. van den Brand ◽  
Theo M. Bestebroer ◽  
...  

ABSTRACT The highly pathogenic avian influenza (HPAI) virus phenotype is restricted to influenza A viruses of the H5 and H7 hemagglutinin (HA) subtypes. To obtain more information on the apparent subtype-specific nature of the HPAI virus phenotype, a low-pathogenic avian influenza (LPAI) H6N1 virus was generated, containing an HPAI H5 RRRKKR↓G multibasic cleavage site (MBCS) motif in HA (the downward arrow indicates the site of cleavage). This insertion converted the LPAI virus phenotype into an HPAI virus phenotype in vitro and in vivo. The H6N1 virus with an MBCS displayed in vitro characteristics similar to those of HPAI H5 viruses, such as cleavage of HA0 (the HA protein of influenza A virus initially synthesized as a single polypeptide precursor) and virus replication in the absence of exogenous trypsin. Studies of chickens confirmed the HPAI phenotype of the H6N1 virus with an MBCS, with an intravenous pathogenicity index of 1.4 and systemic virus replication upon intranasal inoculation, the hallmarks of HPAI viruses. This study provides evidence that the subtype-specific nature of the emergence of HPAI viruses is not at the molecular, structural, or functional level, since the introduction of an MBCS resulted in a fully functional virus with an HPAI virus genotype and phenotype.


2013 ◽  
Vol 94 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Sébastien M. Soubies ◽  
Thomas W. Hoffmann ◽  
Guillaume Croville ◽  
Thibaut Larcher ◽  
Mireille Ledevin ◽  
...  

Highly pathogenic avian influenza (HPAI) H7N1 viruses caused a series of epizootics in Italy between 1999 and 2001. The emergence of these HPAI viruses coincided with the deletion of the six amino acids R225VESEV230 at the C terminus of NS1. In order to assess how the truncation of NS1 affected virus replication, we used reverse genetics to generate a wild-type low-pathogenic avian influenza (LPAI) H7N1 virus with a 230aa NS1 (H7N1230) and a mutant virus with a truncated NS1 (H7N1224). The 6aa truncation had no impact on virus replication in duck or chicken cells in vitro. The H7N1230 and H7N1224 viruses also replicated to similar levels and induced similar immune responses in ducks or chickens. No significant histological lesions were detected in infected ducks, regardless of the virus inoculated. However, in chickens, the H7N1230 virus induced a more severe interstitial pneumonia than did the H7N1224 virus. These findings indicate that the C-terminal extremity of NS1, including the PDZ-binding motif ESEV, is dispensable for efficient replication of an LPAI virus in ducks and chickens, even though it may increase virulence in chickens, as revealed by the intensity of the histological lesions.


Author(s):  
Keiichi Taniguchi ◽  
Yoshinori Ando ◽  
Masanori Kobayashi ◽  
Shinsuke Toba ◽  
Haruaki Nobori ◽  
...  

Human infections with the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threatens public health. The susceptibility of HPAIVs to baloxavir acid (BXA), which is a new class of inhibitor for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but has not yet been characterized fully. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants in vitro was assessed. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested to those of seasonal and other zoonotic strains. BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate; A/Hong Kong/483/1997 (H5N1) strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, followed by prevention of acute lung inflammation and improvement of mortality compared with oseltamivir phosphate (OSP). Furthermore, combination treatments with BXM and OSP, using a 48-hour delayed treatment model showed a more potent effect on viral replication in organs, accompanied by improved survival compared to BXM or OSP monotherapy. From each test, no resistant virus (e.g., I38T in the PA) emerged in any BXM-treated mouse. These results therefore support the conclusion that BXM has potent antiviral efficacy against H5 HPAIV infections.


Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 163 ◽  
Author(s):  
Ishita Roy Chowdhury ◽  
Sai Yeddula ◽  
Shin-Hee Kim

Low pathogenic avian influenza (LPAI) viruses can silently circulate in poultry and wild aquatic birds and potentially mutate into highly pathogenic avian influenza (HPAI) viruses. In the U.S., recent emergence and spread of H7N8 and H7N9 HPAI viruses not only caused devastating losses to domestic poultry but also underscored the capability of LPAI viruses to mutate into HPAI viruses. Therefore, in this study, we evaluated pathogenicity and transmissibility of H7N8 and H7N9 LPAI viruses (the progenitors of HPAI viruses) in chickens and turkeys. We also included H7N2 isolated from an outbreak of LPAI in commercial chickens. H7 viruses replicated more efficiently in the respiratory tract than in the gastrointestinal tract, suggesting that their replication is restricted to the upper respiratory tract. Specifically, H7N2 replicated most efficiently in two-week-old chickens and turkeys. In contrast, H7N8 replicated least efficiently in those birds. Further, replication of H7N2 and H7N9 was restricted in the upper respiratory tract of four-week-old specific-pathogen-free (SPF) and broiler chickens. Despite their restricted replication, the two viruses efficiently transmitted from infected to naïve birds by direct contact, leading to seroconversion of contacted chickens. Our findings suggest the importance of continuous monitoring and surveillance of LPAI viruses in the fields.


Sign in / Sign up

Export Citation Format

Share Document