scholarly journals Neutralizing Antibody Blocks Adenovirus Infection by Arresting Microtubule-Dependent Cytoplasmic Transport

2008 ◽  
Vol 82 (13) ◽  
pp. 6492-6500 ◽  
Author(s):  
Jason G. Smith ◽  
Aurelia Cassany ◽  
Larry Gerace ◽  
Robert Ralston ◽  
Glen R. Nemerow

ABSTRACT Neutralizing antibodies are commonly elicited by viral infection. Most antibodies that have been characterized block early stages of virus entry that occur before membrane penetration, whereas inhibition of late stages in entry that occurs after membrane penetration has been poorly characterized. Here we provide evidence that the neutralizing antihexon monoclonal antibody 9C12 inhibits adenovirus infection by blocking microtubule-dependent translocation of the virus to the microtubule-organizing center following endosome penetration. These studies identify a previously undescribed mechanism by which neutralizing antibodies block virus infection, a situation that may be relevant for other nonenveloped viruses that use microtubule-dependent transport during cell entry.

2021 ◽  
Author(s):  
Colleen Furey ◽  
Helen Astar ◽  
Derek Walsh

While it is well established that microtubules (MTs) facilitate various stages of virus replication, how viruses actively control MT dynamics and functions remains less-well understood. Recent work has begun to reveal how several viruses exploit End-Binding (EB) proteins and their associated microtubule plus-end tracking proteins (+TIPs), in particular to enable loading of viral particles onto MTs for retrograde transport during early stages of infection. But distinct from other viruses studied to date, at mid-to-late stages of its unusually protracted replication cycle human cytomegalovirus (HCMV) increases the expression of all three EB family members. This occurs coincident with the formation of a unique structure termed the Assembly Compartment (AC), which serves as a Golgi-derived MT organizing center. Together, the AC and distinct EB proteins enable HCMV to increase the formation of dynamic and acetylated microtubule subsets to regulate distinct aspects of the viral replication cycle. Here, we reveal that HCMV also exploits EB-independent +TIP pathways by specifically increasing the expression of Transforming Acidic Coiled Coil protein 3 (TACC3) to recruit the MT polymerase, chTOG from initial sites of MT nucleation in the AC out into the cytosol, thereby increasing dynamic MT growth. Preventing TACC3 increases or depleting chTOG impaired MT polymerization, resulting in defects in early versus late endosome organization in and around the AC as well as defects in viral trafficking and spread. Our findings provide the first example of a virus that actively exploits EB-independent +TIP pathways to regulate MT dynamics and control late stages of virus replication. Importance Diverse viruses rely on host cell microtubule networks in order to transport viral particles within the dense cytoplasmic environment and to control the broader architecture of the cell to facilitate their replication. Yet precisely how viruses regulate the dynamic behavior and function of microtubule filaments remains poorly defined. We recently showed that the Assembly Compartment (AC) formed by human cytomegalovirus (HCMV) acts as a Golgi-derived microtubule organizing center. Here, we show that at mid-to-late stages of infection, HCMV increases the expression of Transforming Acidic Coiled Coil protein 3 (TACC3) in order to control the localization of the microtubule polymerase, chTOG. This in turn enables HCMV to generate dynamic microtubule subsets that organize endocytic vesicles in and around the AC and facilitate the transport of new viral particles released into the cytosol. Our findings reveal the first instance of viral targeting of TACC3 to control microtubule dynamics and virus spread.


2005 ◽  
Vol 16 (6) ◽  
pp. 2999-3009 ◽  
Author(s):  
Sten Strunze ◽  
Lloyd C. Trotman ◽  
Karin Boucke ◽  
Urs F. Greber

Incoming adenovirus type 2 (Ad2) and Ad5 shuttle bidirectionally along microtubules, biased to the microtubule-organizing center by the dynein/dynactin motor complex. It is unknown how the particles reach the nuclear pore complex, where capsids disassemble and viral DNA enters the nucleus. Here, we identified a novel link between nuclear export and microtubule-mediated transport. Two distinct inhibitors of the nuclear export factor CRM1, leptomycin B (LMB) and ratjadone A (RJA) or CRM1-siRNAs blocked adenovirus infection, arrested cytoplasmic transport of viral particles at the microtubule-organizing center or in the cytoplasm and prevented capsid disassembly and nuclear import of the viral genome. In mitotic cells where CRM1 is in the cytoplasm, adenovirus particles were not associated with microtubules but upon LMB treatment, they enriched at the spindle poles implying that CRM1 inhibited microtubule association of adenovirus. We propose that CRM1, a nuclear factor exported by CRM1 or a protein complex containing CRM1 is part of a sensor mechanism triggering the unloading of the incoming adenovirus particles from microtubules proximal to the nucleus of interphase cells.


2015 ◽  
Vol 26 (7) ◽  
pp. 1273-1285 ◽  
Author(s):  
Anne Reversat ◽  
Maria-Isabel Yuseff ◽  
Danielle Lankar ◽  
Odile Malbec ◽  
Dorian Obino ◽  
...  

B-cell receptor (BCR) engagement with surface-tethered antigens leads to the formation of an immune synapse, which facilitates antigen uptake for presentation to T-lymphocytes. Antigen internalization and processing rely on the early dynein-dependent transport of BCR–antigen microclusters to the synapse center, as well as on the later polarization of the microtubule-organizing center (MTOC). MTOC repositioning allows the release of proteases and the delivery of MHC class II molecules at the synapse. Whether and how these events are coordinated have not been addressed. Here we show that the ancestral polarity protein Par3 promotes BCR–antigen microcluster gathering, as well as MTOC polarization and lysosome exocytosis, at the synapse by facilitating local dynein recruitment. Par3 is also required for antigen presentation to T-lymphocytes. Par3 therefore emerges as a key molecule in the coupling of the early and late events needed for efficient extraction and processing of immobilized antigen by B-cells.


2017 ◽  
Vol 37 (6) ◽  
Author(s):  
Haiqing Bai ◽  
Gillian M. Schiralli Lester ◽  
Laura C. Petishnok ◽  
David A. Dean

Productive transfection and gene transfer require not simply the entry of DNA into cells and subsequent transcription from an appropriate promoter, but also a number of intracellular events that allow the DNA to move from the extracellular surface of the cell into and through the cytoplasm, and ultimately across the nuclear envelope and into the nucleus before any transcription can initiate. Immediately upon entry into the cytoplasm, naked DNA, either delivered through physical techniques or after disassembly of DNA–carrier complexes, associates with a large number of cellular proteins that mediate subsequent interactions with the microtubule network for movement toward the microtubule organizing center and the nuclear envelope. Plasmids then enter the nucleus either upon the mitotic disassembly of the nuclear envelope or through nuclear pore complexes in the absence of cell division, using a different set of proteins. This review will discuss our current understanding of these pathways used by naked DNA during the transfection process. While much has been elucidated on these processes, much remains to be discerned, but with the development of a number of model systems and approaches, great progress is being made.


Blood ◽  
2012 ◽  
Vol 119 (17) ◽  
pp. 3879-3889 ◽  
Author(s):  
Mathieu Kurowska ◽  
Nicolas Goudin ◽  
Nadine T. Nehme ◽  
Magali Court ◽  
Jérôme Garin ◽  
...  

Abstract Cytotoxic T lymphocytes kill target cells via the polarized secretion of cytotoxic granules at the immune synapse. The lytic granules are initially recruited around the polarized microtubule-organizing center. In a dynein-dependent transport process, the granules move along microtubules toward the microtubule-organizing center in the minus-end direction. Here, we found that a kinesin-1–dependent process is required for terminal transport and secretion of polarized lytic granule to the immune synapse. We show that synaptotagmin-like protein 3 (Slp3) is an effector of Rab27a in cytotoxic T lymphocytes and interacts with kinesin-1 through the tetratricopeptide repeat of the kinesin-1 light chain. Inhibition of the Rab27a/Slp3/kinesin-1 transport complex impairs lytic granule secretion. Our data provide further molecular insights into the key functional and regulatory mechanisms underlying the terminal transport of cytotoxic granules and the latter's secretion at the immune synapse.


Author(s):  
Prerna Arora ◽  
Amy Kempf ◽  
Inga Nehlmeier ◽  
Luise Graichen ◽  
Martin S. Winkler ◽  
...  

Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.


Author(s):  
M.B. Braunfeld ◽  
M. Moritz ◽  
B.M. Alberts ◽  
J.W. Sedat ◽  
D.A. Agard

In animal cells, the centrosome functions as the primary microtubule organizing center (MTOC). As such the centrosome plays a vital role in determining a cell's shape, migration, and perhaps most importantly, its division. Despite the obvious importance of this organelle little is known about centrosomal regulation, duplication, or how it nucleates microtubules. Furthermore, no high resolution model for centrosomal structure exists.We have used automated electron tomography, and reconstruction techniques in an attempt to better understand the complex nature of the centrosome. Additionally we hope to identify nucleation sites for microtubule growth.Centrosomes were isolated from early Drosophila embryos. Briefly, after large organelles and debris from homogenized embryos were pelleted, the resulting supernatant was separated on a sucrose velocity gradient. Fractions were collected and assayed for centrosome-mediated microtubule -nucleating activity by incubating with fluorescently-labeled tubulin subunits. The resulting microtubule asters were then spun onto coverslips and viewed by fluorescence microscopy.


TBEV-particles are assembled in an immature, noninfectious form in the endoplasmic reticulum by the envelopment of the viral core (containing the viral RNA) by a lipid membrane associated with two viral proteins, prM and E. Immature particles are transported through the cellular exocytic pathway and conformational changes induced by acidic pH in the trans-Golgi network allow the proteolytic cleavage of prM by furin, a cellular protease, resulting in the release of mature and infectious TBE-virions. The E protein controls cell entry by mediating attachment to as yet ill-defined receptors as well as by low-pH-triggered fusion of the viral and endosomal membrane after uptake by receptor-mediated endocytosis. Because of its key functions in cell entry, the E protein is the primary target of virus neutralizing antibodies, which inhibit these functions by different mechanisms. Although all flavivirus E proteins have a similar overall structure, divergence at the amino acid sequence level is up to 60 percent (e.g. between TBE and dengue viruses), and therefore cross-neutralization as well as (some degree of) cross-protection are limited to relatively closely related flaviviruses, such as those constituting the tick-borne encephalitis serocomplex.


Sign in / Sign up

Export Citation Format

Share Document