scholarly journals Analysis of Human Cell Heterokaryons Demonstrates that Target Cell Restriction of Cyclosporine-Resistant Human Immunodeficiency Virus Type 1 Mutants Is Genetically Dominant

2007 ◽  
Vol 81 (21) ◽  
pp. 11946-11956 ◽  
Author(s):  
Chisu Song ◽  
Christopher Aiken

ABSTRACT The host cell protein cyclophilin A (CypA) binds to CA of human immunodeficiency virus type 1 (HIV-1) and promotes HIV-1 infection of target cells. Disruption of the CypA-CA interaction, either by mutation of the CA residue at G89 or P90 or with the immunosuppressive drug cyclosporine (CsA), reduces HIV-1 infection. Two CA mutants, A92E and G94D, previously were identified by selection for growth of wild-type HIV-1 in cultures of CD4+ HeLa cell cultures containing CsA. Interestingly, infection of some cell lines by these mutants is enhanced in the presence of CsA, while in other cell lines these mutants are minimally affected by the drug. Little is known about this cell-dependent phenotype of the A92E and G94D mutants, except that it is not dependent on expression of the host factor TRIM5α. Here, we show that infection by the A92E and G94D mutants is restricted at an early postentry stage of the HIV-1 life cycle. Analysis of heterokaryons between CsA-dependent HeLa-P4 cells and CsA-independent 293T cells indicated that the CsA-dependent infection by A92E and G94D mutants is due to a dominant cellular restriction. We also show that addition of CsA to target cells inhibits infection by wild-type HIV-1 prior to reverse transcription. Collectively, these results support the existence of a cell-specific human cellular factor capable of restricting HIV-1 at an early postentry step by a CypA-dependent mechanism.

2003 ◽  
Vol 77 (19) ◽  
pp. 10645-10650 ◽  
Author(s):  
Minoru Tobiume ◽  
Janet E. Lineberger ◽  
Christopher A. Lundquist ◽  
Michael D. Miller ◽  
Christopher Aiken

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef stimulates viral infectivity by an unknown mechanism. Recent studies have suggested that Nef may act by regulating the efficiency of virus entry into cells. Here we provide evidence to the contrary. Using a quantitative assay of HIV-1 virus-cell fusion, we observed equivalent rates and extents of fusion of wild-type and Nef-defective HIV-1 particles with MT-4 cells and CD4-expressing HeLa cells. In studies using soluble CD4 (sCD4) to inhibit infection, wild-type and Nef-defective HIV-1 escaped the sCD4 block with similar kinetics. We conclude that Nef acts at a postentry step in infection, probably by facilitating intracellular transport of the HIV-1 ribonucleoprotein complex.


2000 ◽  
Vol 74 (14) ◽  
pp. 6377-6385 ◽  
Author(s):  
Peter Hug ◽  
Han-Ming Joseph Lin ◽  
Thomas Korte ◽  
Xiaodong Xiao ◽  
Dimiter S. Dimitrov ◽  
...  

ABSTRACT Treatment of human osteosarcoma cells, expressing CD4 and various chemokine receptors, with the glucosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), blocked target membrane glycosphingolipid (GSL) biosynthesis and reduced the susceptibility of cells to infection and fusion mediated by envelope glycoproteins from a variety of human immunodeficiency virus type 1 (HIV-1) isolates that utilize CXCR4 and/or CCR5. PPMP treatment of the cell lines did not significantly change the cell surface expression of CD4, CXCR4, and/or CCR5, nor did it alter the chemokine receptor association with CD4. PPMP-treated cells exhibited no changes in chemokine-induced Ca2+ mobilization and chemotaxis. However, massive envelope glycoprotein conformational changes triggered by CD4 and the appropriate chemokine receptor on the target membrane were inhibited when the target cells were treated with PPMP. Addition of various purified GSLs to PPMP-treated target cells showed that for all isolates tested, globotriaosylceramide (Gb3) was the most potent GSL in restoring the fusion susceptibility of target cells with cells expressing HIV-1 envelope glycoproteins; addition of the monosialoganglioside GM3 yielded a slight enhancement of fusion susceptibility. Our data are consistent with the notion that a limited number of specific GSL species serve as crucial elements in organizing gp120-gp41, CD4, and an appropriate chemokine receptor into a membrane fusion complex.


1999 ◽  
Vol 73 (9) ◽  
pp. 7117-7125 ◽  
Author(s):  
Yanjie Yi ◽  
Stuart N. Isaacs ◽  
Darlisha A. Williams ◽  
Ian Frank ◽  
Dominique Schols ◽  
...  

ABSTRACT Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4).


2008 ◽  
Vol 82 (24) ◽  
pp. 12001-12008 ◽  
Author(s):  
Mingli Qi ◽  
Ruifeng Yang ◽  
Christopher Aiken

ABSTRACT Among retroviruses, lentiviruses are unusual in their ability to efficiently infect both dividing and nondividing cells, such as activated T cells and macrophages, respectively. Recent studies implicate the viral capsid protein (CA) as a key determinant of cell-cycle-independent infection by human immunodeficiency virus type 1 (HIV-1). We investigated the effects of the host cell protein cyclophilin A (CypA), which binds to HIV-1 CA, on HIV-1 infection of nondividing cells. The HIV-1 CA mutants A92E, T54A, and R132K were impaired for infection of aphidicolin-arrested HeLa cells, but not HOS cells. The mutants synthesized normal quantities of two-long-terminal-repeat circles in arrested HeLa cells, indicating that the mutant preintegration complexes can enter the nuclei of both dividing and nondividing cells. The impaired infectivity of the CA mutants on both dividing and nondividing HeLa cells was relieved by either pharmacological or genetic disruption of the CypA-CA interaction or by RNA interference-mediated depletion of CypA expression in target cells. A second-site suppressor of the CypA-restricted phenotype also restored the ability of CypA-restricted HIV-1 mutants to infect growth-arrested HeLa cells. These results indicate that CypA-restricted mutants are specifically impaired at a step between nuclear import and integration in nondividing HeLa cells. This study reveals a novel target cell-specific restriction of HIV-1 CA mutants in nondividing cells that is dependent on CypA-CA interactions.


2002 ◽  
Vol 76 (20) ◽  
pp. 10356-10364 ◽  
Author(s):  
Mireille Guyader ◽  
Etsuko Kiyokawa ◽  
Laurence Abrami ◽  
Priscilla Turelli ◽  
Didier Trono

ABSTRACT The membrane of human immunodeficiency virus type 1 (HIV-1) virions contains high levels of cholesterol and sphingomyelin, an enrichment that is explained by the preferential budding of the virus through raft microdomains of the plasma membrane. Upon depletion of cholesterol from HIV-1 virions with methyl-β-cyclodextrin, infectivity was almost completely abolished. In contrast, this treatment had only a mild effect on the infectiousness of particles pseudotyped with the G envelope of vesicular stomatitis virus. The cholesterol-chelating compound nystatin had a similar effect. Cholesterol-depleted HIV-1 virions exhibited wild-type patterns of viral proteins and contained normal levels of cyclophilin A and glycosylphosphatidylinositol-anchored proteins. Nevertheless, and although they could still bind target cells, these virions were markedly defective for internalization. These results indicate that the cholesterol present in the HIV-1 membrane plays a prominent role in the fusion process that is key to viral entry and suggest that drugs capable of disturbing the lipid composition of virions could serve as a basis for the development of microbicides.


1999 ◽  
Vol 73 (3) ◽  
pp. 2499-2508 ◽  
Author(s):  
Catherine Ulich ◽  
Amanda Dunne ◽  
Emma Parry ◽  
C. William Hooker ◽  
Richard B. Gaynor ◽  
...  

ABSTRACT Tat expression is required for efficient human immunodeficiency virus type 1 (HIV-1) reverse transcription. In the present study, we generated a series of 293 cell lines that contained a provirus with atat gene deletion (Δtat). Cell lines that contained Δtat and stably transfected vectors containing either wild-type tat or a number of tat mutants were obtained so that the abilities of these tat genes to stimulate HIV-1 gene expression and reverse transcription could be compared. tat genes with mutations in the amino terminus did not stimulate either viral gene expression or HIV-1 reverse transcription. In contrast, tat mutants in the activation, core, and basic domains of Tat did not stimulate HIV-1 gene expression but markedly stimulated HIV-1 reverse transcription. No differences in the levels of virion genomic RNA or tRNA3 Lys were seen in the HIV-1 Δtat viruses complemented with either mutant or wild-type tat. Finally, overexpression of the Tat-associated kinases CDK7 and CDK9, which are involved in Tat activation of HIV-1 transcription, was not able to complement the reverse transcription defects associated with the lack of a functionaltat gene. These results indicate that the mechanism by which tat modulates HIV-1 reverse transcription is distinct from its ability to activate HIV-1 gene expression.


2005 ◽  
Vol 49 (12) ◽  
pp. 4911-4919 ◽  
Author(s):  
Julie M. Strizki ◽  
Cecile Tremblay ◽  
Serena Xu ◽  
Lisa Wojcik ◽  
Nicole Wagner ◽  
...  

ABSTRACT Inhibiting human immunodeficiency virus type 1 (HIV-1) infection by blocking the host cell coreceptors CCR5 and CXCR4 is an emerging strategy for antiretroviral therapy. Currently, several novel coreceptor inhibitors are being developed in the clinic, and early results have proven promising. In this report, we describe a novel CCR5 antagonist, vicriviroc (formerly SCH-D or SCH 417690), with improved antiviral activity and pharmacokinetic properties compared to those of SCH-C, a previously described CCR5 antagonist. Like SCH-C, vicriviroc binds specifically to the CCR5 receptor and prevents infection of target cells by CCR5-tropic HIV-1 isolates. In antiviral assays, vicriviroc showed potent, broad-spectrum activity against genetically diverse and drug-resistant HIV-1 isolates and was consistently more active than SCH-C in inhibiting viral replication. This compound demonstrated synergistic anti-HIV activity in combination with drugs from all other classes of approved antiretrovirals. Competition binding assays revealed that vicriviroc binds with higher affinity to CCR5 than SCH-C. Functional assays, including inhibition of calcium flux, guanosine 5′-[35S]triphosphate exchange, and chemotaxis, confirmed that vicriviroc acts as a receptor antagonist by inhibiting signaling of CCR5 by chemokines. Finally, vicriviroc demonstrated diminished affinity for the human ether a-go-go related gene transcript ion channel compared to SCH-C, suggesting a reduced potential for cardiac effects. Vicriviroc represents a promising new candidate for the treatment of HIV-1 infection.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


2007 ◽  
Vol 51 (8) ◽  
pp. 2701-2708 ◽  
Author(s):  
Hirotomo Nakata ◽  
Masayuki Amano ◽  
Yasuhiro Koh ◽  
Eiichi Kodama ◽  
Guangwei Yang ◽  
...  

ABSTRACT We examined the intracytoplasmic anabolism and kinetics of antiviral activity against human immunodeficiency virus type 1 (HIV-1) of a nucleoside reverse transcriptase inhibitor, 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA), which has potent activity against wild-type and multidrug-resistant HIV-1 strains. When CEM cells were exposed to 0.1 μM [3H]EFdA or [3H]3′-azido-2′,3′-dideoxythymidine (AZT) for 6 h, the intracellular EFdA-triphosphate (TP) level was 91.6 pmol/109 cells, while that of AZT was 396.5 pmol/109 cells. When CEM cells were exposed to 10 μM [3H]EFdA, the amount of EFdA-TP increased by 22-fold (2,090 pmol/109 cells), while the amount of [3H]AZT-TP increased only moderately by 2.4-fold (970 pmol/109 cells). The intracellular half-life values of EFdA-TP and AZT-TP were ∼17 and ∼3 h, respectively. When MT-4 cells were cultured with 0.01 μM EFdA for 24 h, thoroughly washed to remove EFdA, further cultured without EFdA for various periods of time, exposed to HIV-1NL4-3, and cultured for an additional 5 days, the protection values were 75 and 47%, respectively, after 24 and 48 h with no drug incubation, while those with 1 μM AZT were 55 and 9.2%, respectively. The 50% inhibitory concentration values of EFdA-TP against human polymerases α, β, and γ were >100 μM, >100 μM, and 10 μM, respectively, while those of ddA-TP were >100 μM, 0.2 μM, and 0.2 μM, respectively. These data warrant further development of EFdA as a potential therapeutic agent for those patients who harbor wild-type HIV-1 and/or multidrug-resistant variants.


2004 ◽  
Vol 78 (3) ◽  
pp. 1324-1332 ◽  
Author(s):  
Yoshiyuki Yokomaku ◽  
Hideka Miura ◽  
Hiroko Tomiyama ◽  
Ai Kawana-Tachikawa ◽  
Masafumi Takiguchi ◽  
...  

ABSTRACT Investigating escape mechanisms of human immunodeficiency virus type 1 (HIV-1) from cytotoxic T lymphocytes (CTLs) is essential for understanding the pathogenesis of HIV-1 infection and developing effective vaccines. To study the processing and presentation of known CTL epitopes, we prepared Epstein-Barr virus-transformed B cells that endogenously express the gag gene of six field isolates by adopting an env/nef-deletion HIV-1 vector pseudotyped with vesicular stomatitis virus G protein and then tested them for the recognition by Gag epitope-specific CTL lines or clones. We observed that two field variants, SLFNTVAVL and SVYNTVATL, of an A*0201-restricted Gag CTL epitope SLYNTVATL, and three field variants, KYRLKHLVW, QYRLKHIVW, and RYRLKHLVW, of an A24-restricted Gag CTL epitope KYKLKHIVW escaped from being killed by the CTL lines, despite the fact that they were recognized when the synthetic peptides corresponding to these variant sequences were exogenously loaded onto the target cells. Thus, their escape is likely due to the changes that occur during the processing and presentation of epitopes in the infected cells. Mutations responsible for this mode of escape were located within the epitope regions rather than the flanking regions, and such mutations did not influence the virus replication. The results suggest that the impaired antigen processing and presentation often occur in HIV-1 field isolates and thus are one of the major mechanisms that enable HIV-1 to escape from CTL recognition. We emphasize the importance of testing HIV-1 variants in an endogenous expression system.


Sign in / Sign up

Export Citation Format

Share Document