ctl epitope
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 16)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Sheng Jiang ◽  
Shuting Wu ◽  
Gan Zhao ◽  
Yue He ◽  
Xinrong Guo ◽  
...  

The COVID-19 disease caused by infection with SARS-CoV-2 and its variants is devastating to the global public health and economy. To date, over a hundred COVID-19 vaccines are known to be under development and the few that have been approved to fight the disease are using the spike protein as the primary target antigen. Although virus neutralizing epitopes are mainly located within the RBD of the spike protein, the presence of T cell epitopes, particularly the CTL epitopes that are likely to be needed for killing infected cells, has received comparatively little attention. In this study, we predicted several potential T cell epitopes with web-based analytic tools, and narrowed them down from several potential MHC I and MHC II epitopes by ELIspot and cytolytic assays to a conserved MHC I epitope. The epitope is highly conserved in current viral variants and compatible with presentation by most HLA alleles worldwide. In conclusion, we identified a CTL epitope suitable for evaluating the CD8+ T cell-mediated cellular response and potentially for addition into future COVID-19 vaccine candidates to maximize CTL responses against SARS-CoV-2.


2021 ◽  
Author(s):  
Sheng Jiang ◽  
Shuting Wu ◽  
Gan Zhao ◽  
Yue He ◽  
Xinrong Guo ◽  
...  

Abstract The COVID-19 disease caused by infection with SARS-CoV-2 and its variants is devastating to the global public health and economy. To date, over a hundred COVID-19 vaccines are known to be under development and the few that have been approved to fight the disease are using the spike protein as the primary target antigen. Although virus neutralizing epitopes are mainly located within the RBD of the spike protein, the presence of T cell epitopes, particularly the CTL epitopes that are likely to be needed for killing infected cells, has received comparatively little attention. In this study, we predicted several potential T cell epitopes with web-based analytic tools, and narrowed them down from several potential MHC‑I and MHC‑II epitopes by ELIspot and cytolytic assays to a conserved MHC‑I epitope. The epitope is highly conserved in current viral variants and compatible with presentation by most HLA alleles worldwide. In conclusion, we identified a CTL epitope suitable for evaluating the CD8+ T cell-mediated cellular response and potentially for addition into future COVID-19 vaccine candidates to maximize CTL responses against SARS-CoV-2.


2020 ◽  
Vol 328 ◽  
pp. 653-664
Author(s):  
Shuyun Dong ◽  
Sundharraman Subramanian ◽  
Kristin N. Parent ◽  
Mingnan Chen
Keyword(s):  

Vaccine ◽  
2020 ◽  
Vol 38 (49) ◽  
pp. 7697-7701
Author(s):  
Daisuke Muraoka ◽  
Deng Situo ◽  
Shin-ichi Sawada ◽  
Kazunari Akiyoshi ◽  
Naozumi Harada ◽  
...  
Keyword(s):  

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Ying Ma ◽  
Kang Tang ◽  
Yusi Zhang ◽  
Chunmei Zhang ◽  
Linfeng Cheng ◽  
...  

Abstract Background An effective vaccine that prevents disease caused by hantaviruses is a global public health priority, but up to now, no vaccine has been approved for worldwide use. Therefore, novel vaccines with high prophylaxis efficacy are urgently needed. Methods Herein, we designed and synthesized Hantaan virus (HTNV) linear multi-epitope peptide consisting of HLA-A*02-restricted HTNV cytotoxic T cell (CTL) epitope and pan HLA-DR-binding epitope (PADRE), and evaluated the immunogenicity, as well as effectiveness, of multi-epitope peptides in HLA-A2.1/Kb transgenic mice with interferon (IFN)-γ enzyme-linked immunospot assay, cytotoxic mediator detection, proliferation assay and HTNV-challenge test. Results The results showed that a much higher frequency of specific IFN-γ-secreting CTLs, high levels of granzyme B production, and a strong proliferation capacity of specific CTLs were observed in splenocytes of mice immunized with multi-epitope peptide than in those of a single CTL epitope. Moreover, pre-immunization of multi-epitope peptide could reduce the levels of HTNV RNA loads in the liver, spleen and kidneys of mice, indicating that specific CTL responses induced by multi-epitope peptide could reduce HTNV RNA loads in vivo. Conclusions This study may provide an important foundation for the development of novel peptide vaccines for HTNV prophylaxis.


2020 ◽  
Author(s):  
Ying Ma ◽  
Kang Tang ◽  
Yusi Zhang ◽  
Chunmei Zhang ◽  
Linfeng Cheng ◽  
...  

Abstract Background: An effective vaccine that prevents disease caused by hantaviruses is a global public health priority, but up to now, no vaccine has been approved for worldwide use. Therefore, novel vaccines with high prophylaxis efficacy are urgently needed.Methods: Herein, we designed and synthesized Hantaan virus (HTNV) linear multi-epitope peptide consisting of HLA-A*02-restricted HTNV cytotoxic T cell (CTL) epitope and pan HLA-DR-binding epitope (PADRE), and evaluated the immunogenicity, as well as effectiveness, of multi-epitope peptides in HLA-A2.1/Kb transgenic mice with interferon (IFN)-γ enzyme-linked immunospot assay, cytotoxic mediator detection, proliferation assay and HTNV-challenge test.Results: The results showed that a much higher frequency of specific IFN-γ-secreting CTLs, high levels of granzyme B production, and a strong proliferation capacity of specific CTLs were observed in splenocytes of mice immunized with multi-epitope peptide than in those of a single CTL epitope. Moreover, pre-immunization of multi-epitope peptide could reduce the levels of HTNV RNA loads in the liver, spleen and kidneys of mice, indicating that specific CTL responses induced by multi-epitope peptide could reduce HTNV RNA loads in vivo.Conclusions: This study may provide an important foundation for the development of novel peptide vaccines for HTNV prophylaxis.


2020 ◽  
Author(s):  
Ying Ma ◽  
Kang Tang ◽  
Yusi Zhang ◽  
Chunmei Zhang ◽  
Linfeng Cheng ◽  
...  

Abstract Background: An effective vaccine that prevents disease caused by hantaviruses is a global public health priority, but up to now, no vaccine has been approved for worldwide use. Therefore, novel vaccines with high prophylaxis efficacy are urgently needed.Methods: Herein, we designed and synthesized Hantaan virus (HTNV) linear multi-epitope peptide consisting of HLA-A*02-restricted HTNV cytotoxic T cell (CTL) epitope and pan HLA-DR-binding epitope (PADRE), and evaluated the immunogenicity, as well as effectiveness, of multi-epitope peptides in HLA-A2.1/Kb transgenic mice with interferon (IFN)-γ enzyme-linked immunospot assay, cytotoxic mediator detection, proliferation assay and HTNV-challenge test.Results: The results showed that a much higher frequency of specific IFN-γ-secreting CTLs, high levels of granzyme B production, and a strong proliferation capacity of specific CTLs were observed in splenocytes of mice immunized with multi-epitope peptide than in those of a single CTL epitope. Moreover, pre-immunization of multi-epitope peptide could reduce the levels of HTNV RNA loads in the liver, spleen and kidneys of mice, indicating that specific CTL responses induced by multi-epitope peptide could reduce HTNV RNA loads in vivo.Conclusions: This study may provide an important foundation for the development of novel peptide vaccines for HTNV prophylaxis.


2020 ◽  
Vol 101 (8) ◽  
pp. 853-862
Author(s):  
Kikue Saika ◽  
Masahiko Kato ◽  
Hideaki Sanada ◽  
Sho Matsushita ◽  
Masanori Matsui ◽  
...  

Simian virus 40 (SV40) is a monkey polyomavirus. The capsid structure is icosahedral and comprises VP1 units that measure 45 nm in diameter. Five SV40 VP1 molecules form one pentamer subunit, and a single icosahedral subunit comprises 72 pentamers; a single SV40 VP1 capsid comprises 360 SV40 VP1 molecules. In a previous study, we showed that an influenza A virus matrix protein 1 (M1) CTL epitope inserted within SV40 virus-like particles (VLPs) induced cytotoxic T lymphocytes (CTLs) without the need for an adjuvant. Here, to address whether SV40 VLPs induce adaptive immune responses against VLP-incorporated antigens, we prepared SV40 VLPs containing M1 or chicken ovalbumin (OVA). This was done by fusing M1 or OVA with the carboxyl terminus of SV40 VP2 and co-expressing them with SV40 VP1 in insect cells using a baculovirus vector. Intraperitoneal (i.p.) or intranasal administration of SV40 VLPs incorporating M1 induced the production of CTLs specific for the M1 epitope without the requirement for adjuvant. The production of antibodies against SV40 VLPs was also induced by i.p. administration of SV40 VLPs in the absence of adjuvant. Finally, the administration of SV40 VLPs incorporating OVA induced anti-OVA antibodies in the absence of adjuvant; in addition, the level of antibody production was comparable with that after i.p. administration of OVA plus alum adjuvant. These results suggest that the SV40 capsid incorporating foreign antigens can be used as a vaccine platform to induce adaptive immune responses without the need for adjuvant.


Sign in / Sign up

Export Citation Format

Share Document