scholarly journals Flavivirus Infection Activates the XBP1 Pathway of the Unfolded Protein Response To Cope with Endoplasmic Reticulum Stress

2006 ◽  
Vol 80 (23) ◽  
pp. 11868-11880 ◽  
Author(s):  
Chia-Yi Yu ◽  
Yun-Wei Hsu ◽  
Ching-Len Liao ◽  
Yi-Ling Lin

ABSTRACT The unfolded protein response (UPR) is a coordinated change in gene expression triggered by perturbations in functions of the endoplasmic reticulum (ER). XBP1, a key transcription factor of the UPR, is activated by an IRE1-mediated splicing event, which results in a frameshift and encodes a protein with transcriptional activity. Here, we report that XBP1 was activated during flaviviral infection, as evidenced by XBP1 mRNA splicing and protein expression, as well as induction of the downstream genes ERdj4, EDEM1, and p58(IPK) in Japanese encephalitis virus (JEV)- and dengue virus serotype 2 (DEN-2)-infected cells. Reporter systems based on IRE1-mediated XBP1 splicing were established, and several flaviviral proteins associated with the ER, including glycoproteins and small hydrophobic membrane-anchored proteins, were found to trigger the splicing event. Notably, nonstructural protein NS2B-3 of DEN-2, but not of JEV, was a potent inducer of XBP1 splicing through an unclear mechanism(s). Reduction of XBP1 by a small interfering RNA had no effect on cells' susceptibility to the two viruses but exacerbated the flavivirus-induced cytopathic effects. Overall, flaviviruses trigger the XBP1 signaling pathway and take advantage of this cellular response to alleviate virus-induced cytotoxicity.

2015 ◽  
Vol 112 (19) ◽  
pp. 6212-6217 ◽  
Author(s):  
Justin Walley ◽  
Yanmei Xiao ◽  
Jin-Zheng Wang ◽  
Edward E. Baidoo ◽  
Jay D. Keasling ◽  
...  

Cellular homeostasis in response to internal and external stimuli requires a tightly coordinated interorgannellar communication network. We recently identified methylerythritol cyclodiphosphate (MEcPP) as a novel stress-specific retrograde signaling metabolite that accumulates in response to environmental perturbations to relay information from plastids to the nucleus. We now demonstrate, using a combination of transcriptome and proteome profiling approaches, that mutant plants (ceh1) with high endogenous levels of MEcPP display increased transcript and protein levels for a subset of the core unfolded protein response (UPR) genes. The UPR is an adaptive cellular response conserved throughout eukaryotes to stress conditions that perturb the endoplasmic reticulum (ER) homeostasis. Our results suggest that MEcPP directly triggers the UPR. Exogenous treatment with MEcPP induces the rapid and transient induction of both the unspliced and spliced forms of the UPR gene bZIP60. Moreover, compared with the parent background (P), ceh1 mutants are less sensitive to the ER-stress-inducing agent tunicamycin (Tm). P and ceh1 plants treated with Tm display similar UPR transcript profiles, suggesting that although MEcPP accumulation causes partial induction of selected UPR genes, full induction is triggered by accumulation of misfolded proteins. This finding refines our perspective of interorgannellar communication by providing a link between a plastidial retrograde signaling molecule and its targeted ensemble of UPR components in ER.


1997 ◽  
Vol 8 (9) ◽  
pp. 1805-1814 ◽  
Author(s):  
J S Cox ◽  
R E Chapman ◽  
P Walter

The endoplasmic reticulum (ER) is a multifunctional organelle responsible for production of both lumenal and membrane components of secretory pathway compartments. Secretory proteins are folded, processed, and sorted in the ER lumen and lipid synthesis occurs on the ER membrane itself. In the yeast Saccharomyces cerevisiae, synthesis of ER components is highly regulated: the ER-resident proteins by the unfolded protein response and membrane lipid synthesis by the inositol response. We demonstrate that these two responses are intimately linked, forming different branches of the same pathway. Furthermore, we present evidence indicating that this coordinate regulation plays a role in ER biogenesis.


2012 ◽  
Vol 26 (6) ◽  
pp. 2437-2445 ◽  
Author(s):  
Soumen Kahali ◽  
Bhaswati Sarcar ◽  
Antony Prabhu ◽  
Edward Seto ◽  
Prakash Chinnaiyan

1998 ◽  
Vol 143 (4) ◽  
pp. 921-933 ◽  
Author(s):  
Susana Silberstein ◽  
Gabriel Schlenstedt ◽  
Pam A. Silver ◽  
Reid Gilmore

Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Δscj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Δscj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.


2003 ◽  
Vol 23 (21) ◽  
pp. 7448-7459 ◽  
Author(s):  
Ann-Hwee Lee ◽  
Neal N. Iwakoshi ◽  
Laurie H. Glimcher

ABSTRACT The mammalian unfolded protein response (UPR) protects the cell against the stress of misfolded proteins in the endoplasmic reticulum (ER). We have investigated here the contribution of the UPR transcription factors XBP-1, ATF6α, and ATF6β to UPR target gene expression. Gene profiling of cell lines lacking these factors yielded several XBP-1-dependent UPR target genes, all of which appear to act in the ER. These included the DnaJ/Hsp40-like genes, p58IPK, ERdj4, and HEDJ, as well as EDEM, protein disulfide isomerase-P5, and ribosome-associated membrane protein 4 (RAMP4), whereas expression of BiP was only modestly dependent on XBP-1. Surprisingly, given previous reports that enforced expression of ATF6α induced a subset of UPR target genes, cells deficient in ATF6α, ATF6β, or both had minimal defects in upregulating UPR target genes by gene profiling analysis, suggesting the presence of compensatory mechanism(s) for ATF6 in the UPR. Since cells lacking both XBP-1 and ATF6α had significantly impaired induction of select UPR target genes and ERSE reporter activation, XBP-1 and ATF6α may serve partially redundant functions. No UPR target genes that required ATF6β were identified, nor, in contrast to XBP-1 and ATF6α, did the activity of the UPRE or ERSE promoters require ATF6β, suggesting a minor role for it during the UPR. Collectively, these results suggest that the IRE1/XBP-1 pathway is required for efficient protein folding, maturation, and degradation in the ER and imply the existence of subsets of UPR target genes as defined by their dependence on XBP-1. Further, our observations suggest the existence of additional, as-yet-unknown, key regulators of the UPR.


Sign in / Sign up

Export Citation Format

Share Document