scholarly journals The HIV Integrase Inhibitor Raltegravir Inhibits Felid Alphaherpesvirus 1 Replication by Targeting both DNA Replication and Late Gene Expression

2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Matthew R. Pennington ◽  
Ian E. H. Voorhees ◽  
Heather M. Callaway ◽  
Shannon D. Dehghanpir ◽  
Joel D. Baines ◽  
...  

ABSTRACTAlphaherpesvirus-associated ocular infections in humans caused by human alphaherpesvirus 1 (HHV-1) remain challenging to treat due to the frequency of drug application required and the potential for the selection of drug-resistant viruses. Repurposing on-the-market drugs is a viable strategy to accelerate the pace of drug development. It has been reported that the human immunodeficiency virus (HIV) integrase inhibitor raltegravir inhibits HHV-1 replication by targeting the DNA polymerase accessory factor and limits terminase-mediated genome cleavage of human betaherpesvirus 5 (HHV-5). We have previously shown, bothin vitroandin vivo, that raltegravir can also inhibit the replication of felid alphaherpesvirus 1 (FeHV-1), a common ocular pathogen of cats with a pathogenesis similar to that of HHV-1 ocular disease. In contrast to what was reported for HHV-1, we were unable to select for a raltegravir-resistant FeHV-1 strain in order to define any basis for drug action. A candidate-based approach to explore the mode of action of raltegravir against FeHV-1 showed that raltegravir did not impact FeHV-1 terminase function, as described for HHV-5. Instead, raltegravir inhibited DNA replication, similarly to HHV-1, but by targeting the initiation of viral DNA replication rather than elongation. In addition, we found that raltegravir specifically repressed late gene expression independently of DNA replication, and both activities are consistent with inhibition of ICP8. Taken together, these results suggest that raltegravir could be a valuable therapeutic agent against herpesviruses.IMPORTANCEThe rise of drug-resistant herpesviruses is a longstanding concern, particularly among immunocompromised patients. Therefore, therapies targeting viral proteins other than the DNA polymerase that may be less likely to lead to drug-resistant viruses are urgently needed. Using FeHV-1, an alphaherpesvirus closely related to HHV-1 that similarly causes ocular herpes in its natural host, we found that the HIV integrase inhibitor raltegravir targets different stages of the virus life cycle beyond DNA replication and that it does so without developing drug resistance under the conditions tested. This shows that the drug could provide a viable strategy for the treatment of herpesvirus infections.

1979 ◽  
Vol 29 (1) ◽  
pp. 322-327 ◽  
Author(s):  
D J McCorquodale ◽  
J Gossling ◽  
R Benzinger ◽  
R Chesney ◽  
L Lawhorne ◽  
...  

2010 ◽  
Vol 84 (12) ◽  
pp. 6153-6162 ◽  
Author(s):  
Mei Yu ◽  
Eric B. Carstens

ABSTRACT Autographa californica multiple nucleopolyhedrovirus (AcMNPV) lef-3 is one of nine genes required for viral DNA replication in transient assays. LEF-3 is predicted to contain several domains related to its functions, including nuclear localization, single-strand DNA binding, oligomerization, interaction with P143 helicase, and interaction with a viral alkaline nuclease. To investigate the essential nature of LEF-3 and the roles it may play during baculovirus DNA replication, a lef-3 null bacmid (bKO-lef3) was constructed in Escherichia coli and characterized in Sf21 cells. The results showed that AcMNPV lef-3 is essential for DNA replication, budded virus production, and late gene expression in vivo. Cells transfected with the lef-3 knockout bacmid produced low levels of early proteins (P143, DNA polymerase, and early GP64) and no late proteins (P47, VP39, or late GP64). To investigate the functional role of domains within the LEF-3 open reading frame in the presence of the whole viral genome, plasmids expressing various LEF-3 truncations were transfected into Sf21 cells together with bKO-lef3 DNA. The results showed that expression of AcMNPV LEF-3 amino acids 1 to 125 was sufficient to stimulate viral DNA replication and to support late gene expression. Expression of Choristoneura fumiferana MNPV lef-3 did not rescue any LEF-3 functions. The construction of a LEF-3 amino acid 1 to 125 rescue bacmid revealed that this region of LEF-3, when expressed in the presence of the rest of the viral genome, stimulated viral DNA replication and late and very late protein expression, as well as budded virus production.


2000 ◽  
Vol 74 (21) ◽  
pp. 10122-10131 ◽  
Author(s):  
Elizabeth E. McNamee ◽  
Travis J Taylor ◽  
David M. Knipe

ABSTRACT The d105 dominant-negative mutant form of the herpes simplex virus 1 (HSV-1) single-stranded DNA-binding protein, ICP8 (d105 ICP8), inhibits wild-type viral replication, and it blocks both viral DNA replication and late gene transcription, although to different degrees (M. Gao and D. M. Knipe, J. Virol. 65:2666–2675, 1991; Y. M. Chen and D. M. Knipe, Virology 221:281–290, 1996). We demonstrate here that this protein is also capable of preventing the formation of intranuclear prereplicative sites and replication compartments during HSV infection. We defined three patterns of ICP8 localization using indirect immunofluorescence staining of HSV-1-infected cells: large replication compartments, small compartments, and no specific intranuclear localization of ICP8. Cells that form large replication compartments replicate viral DNA and express late genes. Cells that form small replication compartments replicate viral DNA but do not express late genes, while cells without viral replication compartments are incapable of both DNA replication and late gene expression. The d105 ICP8 protein blocks formation of prereplicative sites and large replication compartments in 80% of infected cells and formation of large replication compartments in the remaining 20% of infected cells. The phenotype ofd105 suggests a correlation between formation of large replication compartments and late gene expression and a role for intranuclear rearrangement of viral DNA and bound proteins in activation of late gene transcription. Thus, these results provide evidence for specialized machinery for late gene expression within replication compartments.


2007 ◽  
Vol 81 (8) ◽  
pp. 4058-4069 ◽  
Author(s):  
Zhao Han ◽  
Elessa Marendy ◽  
Yong-Dong Wang ◽  
Jing Yuan ◽  
Jeffery T. Sample ◽  
...  

ABSTRACT The effect of Epstein-Barr virus (EBV) SM protein on EBV gene expression was examined using a recombinant EBV strain with the SM gene deleted and DNA microarrays representing all known EBV coding regions. Induction of lytic EBV replication in the absence of SM led to expression of approximately 40% of EBV genes, but a block in expression of over 50% of EBV genes. Contrary to previous findings, several early genes were SM dependent, and lytic EBV DNA replication did not occur in the absence of SM. Notably, two genes essential for lytic EBV DNA replication, BSLF1 and BALF5, encoding EBV DNA primase and polymerase, respectively, were SM dependent. Lytic DNA replication was partially rescued by ectopic expression of EBV primase and polymerase, but virion production was not. Rescue of DNA replication only enhanced expression of a subset of late genes, consistent with a direct requirement for SM for late gene expression in addition to its contribution to DNA replication. Therefore, while SM is essential for most late gene expression, the proximate block to virion production by the EBV SM deletion strain is an inability to replicate linear DNA. The block to DNA replication combined with the direct effect of SM on late gene expression leads to a global deficiency of late gene expression. SM also inhibited BHRF1 expression during productive replication in comparison to that of cells induced into lytic replication in the absence of SM. Thus, SM plays a role in multiple steps of lytic cycle EBV gene expression and that it is transcript-specific in both activation and repression functions.


Sign in / Sign up

Export Citation Format

Share Document