scholarly journals The Virion Host Shutoff Protein (UL41) of Herpes Simplex Virus 1 Is an Endoribonuclease with a Substrate Specificity Similar to That of RNase A

2006 ◽  
Vol 80 (18) ◽  
pp. 9341-9345 ◽  
Author(s):  
Brunella Taddeo ◽  
Bernard Roizman

ABSTRACT Earlier, our laboratory reported that purified glutathione S-transferase-virion host shutoff (GST-vhs) protein exhibited endoribonucleolytic activity in in vitro assays using as substrates in vitro-transcribed regions of IEX-1 mRNA. Here, we report that studies of the cleavage patterns of synthetic RNA oligonucleotides defined the activity of GST-vhs as being similar to that of RNase A. Thus, GST-vhs cleaved the RNA at the 3′ end of single-stranded cytidine and uridine residues. Since the GST-mvhs nuclease-defective mutant protein failed to cleave the synthetic RNAs, the results unambiguously attribute the activity to vhs.

2014 ◽  
Vol 88 (20) ◽  
pp. 12163-12166 ◽  
Author(s):  
G. Shen ◽  
K. Wang ◽  
S. Wang ◽  
M. Cai ◽  
M.-l. Li ◽  
...  

2001 ◽  
Vol 75 (3) ◽  
pp. 1172-1185 ◽  
Author(s):  
Patricia Lu ◽  
Frank E. Jones ◽  
Holly A. Saffran ◽  
James R. Smiley

ABSTRACT The virion host shutoff protein (vhs) of herpes simplex virus (HSV) triggers global shutoff of host protein synthesis and accelerated mRNA turnover during virus infection and induces endoribonucleolytic cleavage of exogenous RNA substrates when it is produced in a rabbit reticulocyte (RRL) in vitro translation system. Although vhs induces RNA turnover in the absence of other HSV gene products, it is not yet known whether cellular factors are required for its activity. As one approach to addressing this question, we expressed vhs in the budding yeast Saccharomyces cerevisiae. Expression of vhs inhibited colony formation, and the severity of this effect varied with the carbon source. The biological relevance of this effect was assessed by examining the activity of five mutant forms of vhs bearing previously characterized in-frame linker insertions. The results indicated a complete concordance between the growth inhibition phenotype in yeast and mammalian host cell shutoff. Despite these results, expression of vhs did not trigger global mRNA turnover in vivo, and cell extracts of yeast expressing vhs displayed little if any vhs-dependent endoribonuclease activity. However, activity was readily detected when such extracts were mixed with RRL. These data suggest that the vhs-dependent endoribonuclease requires one or more mammalian macromolecular factors for efficient activity.


2003 ◽  
Vol 77 (5) ◽  
pp. 2892-2902 ◽  
Author(s):  
J. Knez ◽  
P. T. Bilan ◽  
J. P. Capone

ABSTRACT In addition to its well-established role in the activation of herpes simplex virus immediate-early gene transcription, VP16 interacts with and downregulates the function of the virion host shutoff protein (vhs), thereby attenuating vhs-mediated destruction of viral mRNAs and translational arrest at late times of infection. We have carried out two-hybrid analysis in vivo and protein-protein interaction assays in vitro to identify determinants in VP16 necessary for interaction with vhs. The minimal amino-terminal subfragment of VP16 capable of binding to vhs encompassed residues 1 to 345. Alteration of a single leucine at position 344 to alanine (L344A) in the context of the amino-terminal fragment of VP16 containing residues 1 to 404 was sufficient to abolish interaction with vhs in vitro and in vivo. Leu344 could be replaced with hydrophobic amino acids (Ile, Phe, Met, or Val) but not by Asn, Lys, or Pro, indicating that hydrophobicity is an important property of binding to vhs. VP16 harboring a loss-of-function mutation at L344 was not compromised in its ability to interact with host cell factor (HCF-1) or to activate transcription of viral immediate-early genes in transient-transfection assays. Virus complementation assays using the VP16-null virus 8MA and the VP16/vhs double-mutant virus 8MAΔSma showed that VP16(L344A) was able to complement the growth of 8MAΔSma but not 8MA. Thus, a single point mutation in VP16 uncouples binding to vhs from other functions of VP16 required for virus growth and indicates that direct physical association between VP16 and vhs is necessary to sustain a productive infection.


1994 ◽  
Vol 68 (4) ◽  
pp. 2339-2346 ◽  
Author(s):  
C A Smibert ◽  
B Popova ◽  
P Xiao ◽  
J P Capone ◽  
J R Smiley

Sign in / Sign up

Export Citation Format

Share Document