scholarly journals Neuraminidase Inhibitor-Resistant Recombinant A/Vietnam/1203/04 (H5N1) Influenza Viruses Retain Their Replication Efficiency and Pathogenicity In Vitro and In Vivo

2007 ◽  
Vol 81 (22) ◽  
pp. 12418-12426 ◽  
Author(s):  
Hui-Ling Yen ◽  
Natalia A. Ilyushina ◽  
Rachelle Salomon ◽  
Erich Hoffmann ◽  
Robert G. Webster ◽  
...  

ABSTRACT Effective antiviral drugs are essential for early control of an influenza pandemic. It is therefore crucial to evaluate the possible threat posed by neuraminidase (NA) inhibitor-resistant influenza viruses with pandemic potential. Four NA mutations (E119G, H274Y, R292K, and N294S) that have been reported to confer resistance to NA inhibitors were each introduced into recombinant A/Vietnam/1203/04 (VN1203) H5N1 influenza virus. For comparison, the same mutations were introduced into recombinant A/Puerto Rico/8/34 (PR8) H1N1 influenza virus. The E119G and R292K mutations significantly compromised viral growth in vitro, but the H274Y and N294S mutations were stably maintained in VN1203 and PR8 viruses. In both backgrounds, the H274Y and N294S mutations conferred resistance to oseltamivir carboxylate (50% inhibitory concentration [IC50] increases, >250-fold and >20-fold, respectively), and the N294S mutation reduced susceptibility to zanamivir (IC50 increase, >3.0-fold). Although the H274Y and N294S mutations did not compromise the replication efficiency of VN1203 or PR8 viruses in vitro, these mutations slightly reduced the lethality of PR8 virus in mice. However, the VN1203 virus carrying either the H274Y or N294S mutation exhibited lethality similar to that of the wild-type VN1203 virus. The different enzyme kinetic parameters (V max and Km ) of avian-like VN1203 NA and human-like PR8 NA suggest that resistance-associated NA mutations can cause different levels of functional loss in NA glycoproteins of the same subtype. Our results suggest that NA inhibitor-resistant H5N1 variants may retain the high pathogenicity of the wild-type virus in mammalian species. Patients receiving NA inhibitors for H5N1 influenza virus infection should be closely monitored for the emergence of resistant variants.

2009 ◽  
Vol 84 (3) ◽  
pp. 1527-1535 ◽  
Author(s):  
Mark L. Reed ◽  
Olga A. Bridges ◽  
Patrick Seiler ◽  
Jeong-Ki Kim ◽  
Hui-Ling Yen ◽  
...  

ABSTRACT While the molecular mechanism of membrane fusion by the influenza virus hemagglutinin (HA) protein has been studied extensively in vitro, the role of acid-dependent HA protein activation in virus replication, pathogenesis, and transmission in vivo has not been characterized. To investigate the biological significance of the pH of activation of the HA protein, we compared the properties of four recombinant viruses with altered HA protein acid stability to those of wild-type influenza virus A/chicken/Vietnam/C58/04 (H5N1) in vitro and in mallards. Membrane fusion by wild-type virus was activated at pH 5.9. Wild-type virus had a calculated environmental persistence of 62 days and caused extensive morbidity, mortality, shedding, and transmission in mallards. An N114K mutation that increased the pH of HA activation by 0.5 unit resulted in decreased replication, genetic stability, and environmental stability. Changes of +0.4 and −0.5 unit in the pH of activation by Y23H and K58I mutations, respectively, reduced weight loss, mortality, shedding, and transmission in mallards. An H24Q mutation that decreased the pH of activation by 0.3 unit resulted in weight loss, mortality, clinical symptoms, and shedding similar to those of the wild type. However, the HA-H241Q virus was shed more extensively into drinking water and persisted longer in the environment. The pH of activation of the H5 HA protein plays a key role in the propagation of H5N1 influenza viruses in ducks and may be a novel molecular factor in the ecology of influenza viruses. The data also demonstrate that H5N1 neuraminidase activity increases the pH of activation of the HA protein in vitro.


2011 ◽  
Vol 18 (7) ◽  
pp. 1083-1090 ◽  
Author(s):  
Michael G. Wallach ◽  
Richard J. Webby ◽  
Fakhrul Islam ◽  
Stephen Walkden-Brown ◽  
Eva Emmoth ◽  
...  

ABSTRACTInfluenza viruses remain a major threat to global health due to their ability to undergo change through antigenic drift and antigenic shift. We postulated that avian IgY antibodies represent a low-cost, effective, and well-tolerated approach that can easily be scaled up to produce enormous quantities of protective antibodies. These IgY antibodies can be administered passively in humans (orally and intranasally) and can be used quickly and safely to help in the fight against an influenza pandemic. In this study, we raised IgY antibodies against H1N1, H3N2, and H5N1 influenza viruses. We demonstrated that, using whole inactivated viruses alone and in combination to immunize hens, we were able to induce a high level of anti-influenza virus IgY in the sera and eggs, which lasted for at least 2 months after two immunizations. Furthermore, we found that by use ofin vitroassays to test for the ability of IgY to inhibit hemagglutination (HI test) and virus infectivity (serum neutralization test), IgYs inhibited the homologous as well as in some cases heterologous clades and strains of viruses. Using anin vivomouse model system, we found that, when administered intranasally 1 h prior to infection, IgY to H5N1 protected 100% of the mice against lethal challenge with H5N1. Of particular interest was the finding that IgY to H5N1 cross-protected against A/Puerto Rico/8/34 (H1N1) bothin vitroandin vivo. Based on our results, we conclude that anti-influenza virus IgY can be used to help prevent influenza virus infection.


2010 ◽  
Vol 17 (9) ◽  
pp. 1363-1370 ◽  
Author(s):  
Jianqiang Ye ◽  
Hongxia Shao ◽  
Danielle Hickman ◽  
Matthew Angel ◽  
Kemin Xu ◽  
...  

ABSTRACT Highly pathogenic avian H5N1 influenza viruses are endemic in poultry in Asia and pose a pandemic threat to humans. Since the deployment of vaccines against a pandemic strain may take several months, adequate antiviral alternatives are needed to minimize the effects and the spread of the disease. Passive immunotherapy is regarded as a viable alternative. Here, we show the development of an IgA monoclonal antibody (DPJY01 MAb) specific to H5 hemagglutinin. The DPJY01 MAb showed a broad hemagglutination inhibition (HI) profile against Asian H5N1 viruses of clades 0, 1.0, 2.1, 2.2, and 2.3 and also against H5 wild bird influenza viruses of the North American and Eurasian lineages. DPJY01 MAb displayed also high neutralization activity in vitro and in vivo. In mice, DPJY01 MAb provided protection via a single dose administered intranasally before or after inoculation with a sublethal dose of H5N1 viruses of clades 1.0 and 2.2. Pretreatment with 50 mg of DPJY01 MAb kg of body weight at either 24, 48, or 72 h before highly pathogenic H5N1 virus (A/Vietnam/1203/2004 [H5N1]) inoculation resulted in complete protection. Treatment with 50 mg/kg at either at 24, 48, or 72 h after H5N1 inoculation provided 100%, 80%, and 60% protection, respectively. These studies highlight the potential use of DPJY01 MAb as an intranasal antiviral treatment for H5N1 influenza virus infections.


2001 ◽  
Vol 75 (6) ◽  
pp. 2516-2525 ◽  
Author(s):  
Sang Heui Seo ◽  
Robert G. Webster

ABSTRACT In 1997, avian H5N1 influenza virus transmitted from chickens to humans resulted in 18 confirmed infections. Despite harboring lethal H5N1 influenza viruses, most chickens in the Hong Kong poultry markets showed no disease signs. At this time, H9N2 influenza viruses were cocirculating in the markets. We investigated the role of H9N2 influenza viruses in protecting chickens from lethal H5N1 influenza virus infections. Sera from chickens infected with an H9N2 influenza virus did not cross-react with an H5N1 influenza virus in neutralization or hemagglutination inhibition assays. Most chickens primed with an H9N2 influenza virus 3 to 70 days earlier survived the lethal challenge of an H5N1 influenza virus, but infected birds shed H5N1 influenza virus in their feces. Adoptive transfer of T lymphocytes or CD8+ T cells from inbred chickens (B2/B2) infected with an H9N2 influenza virus to naive inbred chickens (B2/B2) protected them from lethal H5N1 influenza virus. In vitro cytotoxicity assays showed that T lymphocytes or CD8+ T cells from chickens infected with an H9N2 influenza virus recognized target cells infected with either an H5N1 or H9N2 influenza virus in a dose-dependent manner. Our findings indicate that cross-reactive cellular immunity induced by H9N2 influenza viruses protected chickens from lethal infection with H5N1 influenza viruses in the Hong Kong markets in 1997 but permitted virus shedding in the feces. Our findings are the first to suggest that cross-reactive cellular immunity can change the outcome of avian influenza virus infection in birds in live markets and create a situation for the perpetuation of H5N1 influenza viruses.


2011 ◽  
Vol 92 (6) ◽  
pp. 1435-1444 ◽  
Author(s):  
Jing Li ◽  
Yongqiang Li ◽  
Yi Hu ◽  
Guohui Chang ◽  
Wei Sun ◽  
...  

H5N1 avian influenza viruses demonstrate different phenotypes, such as pathogenicity after one or serial passages in mammalian hosts or cells. To establish the molecular basis of these phenotypes, we cloned isolates from the lungs of mice infected with human A/Vietnam/1194/2004 (H5N1) influenza virus. Large-plaque isolates were less pathogenic to mice than small-plaque isolates. Genome sequencing revealed that the small-plaque and large-plaque isolates differed in several amino acids. In order to assess their effects on pathogenicity in mice, two amino acid changes common to attenuated isolates, one in PB2 (I63T) and the other in PB1 (T677M), were inserted into a wild-type recombinant virus construct. The PB2 (I63T) or PB1 (T677M) mutations alone did not alter the phenotype of H5N1 virus, whereas recombinant virus with both mutations was less pathogenic than the wild-type recombinant virus. Furthermore, the PB1 (T677M) mutation showed a lower replication efficiency, although it had higher polymerase activity. The recombinant virus with the PB2 (63T) mutation replicated as well as the wild-type recombinant virus. These results suggest that the C terminus of PB1 of H5N1 influenza virus mediates virulence attenuation of H5N1 influenza virus in mice, associating with the N terminus of PB2. However, the role of the N terminus of PB2 in virulence attenuation in mice remains unclear.


2020 ◽  
Vol 95 (2) ◽  
pp. e01526-20
Author(s):  
Z. Beau Reneer ◽  
Parker J. Jamieson ◽  
Amanda L. Skarlupka ◽  
Ying Huang ◽  
Ted M. Ross

ABSTRACTInfluenza viruses have caused numerous pandemics throughout human history. The 1957 influenza pandemic was initiated by an H2N2 influenza virus. This H2N2 influenza virus was the result of a reassortment event between a circulating H2N2 avian virus and the seasonal H1N1 viruses in humans. Previously, our group has demonstrated the effectiveness of hemagglutinin (HA) antigens derived using computationally optimized broadly reactive antigen (COBRA) methodology against H1N1, H3N2, and H5N1 viruses. Using the COBRA methodology, H2 HA COBRA antigens were designed using sequences from H2N2 viruses isolated from humans in the 1950s and 1960s, as well as H2Nx viruses isolated from avian and mammalian species between the 1950s and 2016. In this study, the effectiveness of H2 COBRA HA antigens (Z1, Z3, Z5, and Z7) was evaluated in DBA/2J mice and compared to that of wild-type H2 HA antigens. The COBRA HA vaccines elicited neutralizing antibodies to the majority of viruses in our H2 HA panel and across all three clades as measured by hemagglutination inhibition (HAI) and neutralization assays. Comparatively, several wild-type HA vaccines elicited antibodies against a majority of the viruses in the H2 HA panel. DBA/2J mice vaccinated with COBRA vaccines showed increase survival for all three viral challenges compared to the wild-type H2 vaccines. In particular, the Z1 COBRA is a promising candidate for future work toward a pandemic H2 influenza vaccine.IMPORTANCE H2N2 influenza has caused at least one pandemic in the past. Given that individuals born after 1968 have not been exposed to H2N2 influenza viruses, a future pandemic caused by H2 influenza is likely. An effective H2 influenza vaccine would need to elicit broadly cross-reactive antibodies to multiple H2 influenza viruses. Choosing a wild-type virus to create a vaccine may elicit a narrow immune response and not protect against multiple H2 influenza viruses. COBRA H2 HA vaccines were developed and evaluated in mice along with wild-type H2 HA vaccines. Multiple COBRA H2 HA vaccines protected mice from all three viral challenges and produced broadly cross-reactive neutralizing antibodies to H2 influenza viruses.


2011 ◽  
Vol 203 (8) ◽  
pp. 1063-1072 ◽  
Author(s):  
Lorena Itatí Ibañez ◽  
Marina De Filette ◽  
Anna Hultberg ◽  
Theo Verrips ◽  
Nigel Temperton ◽  
...  

2007 ◽  
Vol 81 (16) ◽  
pp. 8515-8524 ◽  
Author(s):  
D. J. Hulse-Post ◽  
J. Franks ◽  
K. Boyd ◽  
R. Salomon ◽  
E. Hoffmann ◽  
...  

ABSTRACT The highly pathogenic (HP) influenza viruses H5 and H7 are usually nonpathogenic in mallard ducks. However, the currently circulating HP H5N1 viruses acquired a different phenotype and are able to cause mortality in mallards. To establish the molecular basis of this phenotype, we cloned the human A/Vietnam/1203/04 (H5N1) influenza virus isolate that is highly pathogenic in ferrets, mice, and mallards and found it to be a heterogeneous mixture. Large-plaque isolates were highly pathogenic to ducks, mice, and ferrets, whereas small-plaque isolates were nonpathogenic in these species. Sequence analysis of the entire genome revealed that the small-plaque and the large-plaque isolates differed in the coding of five amino acids. There were two differences in the hemagglutinin (HA) gene (K52T and A544V), one in the PA gene (T515A), and two in the PB1 gene (K207R and Y436H). We inserted the amino acid changes into the wild-type reverse genetic virus construct to assess their effects on pathogenicity in vivo. The HA gene mutations and the PB1 gene K207R mutation did not alter the HP phenotype of the large-plaque virus, whereas constructs with the PA (T515A) and PB1 (Y436H) gene mutations were nonpathogenic in orally inoculated ducks. The PB1 (Y436H) construct was not efficiently transmitted in ducks, whereas the PA (T515A) construct replicated as well as the wild-type virus did and was transmitted efficiently. These results show that the PA and PB1 genes of HP H5N1 influenza viruses are associated with lethality in ducks. The mechanisms of lethality and the perpetuation of this lethal phenotype in ducks in nature remain to be determined.


2020 ◽  
Author(s):  
Louisa L.Y. Chan ◽  
John M. Nicholls ◽  
J.S. Malik Peiris ◽  
Yu Lung Lau ◽  
Michael C.W. Chan ◽  
...  

Abstract Background Neutrophil (Nϕ) is of the most abundant number in human immune system. During acute influenza virus infection, Nϕs are already active in the early phase of inflammation-a time in which clinical biopsy or autopsy material is not readily available. However, the role of Nϕ in virus infection is not well understood. Here, we studied the role of Nϕ in host defense during influenza A virus infection, specifically assessing if it contributes to the differential pathogenesis in H5N1 disease. Methods Nϕs were freshly isolated from healthy volunteers and subjected to direct influenza H1N1 and H5N1 virus infection in vitro . The ability of the naïve Nϕs to infiltrate from the basolateral to the apical phase of the influenza virus infected alveolar epithelium was assessed. The viral replication, innate immune responses and Neutrophil extracellular trap (NET) formation of Nϕs upon influenza virus infection were evaluated. Results Our results demonstrated that influenza virus infected alveolar epithelium allowed more Nϕs transmigration. Significantly more Nϕs migrated across the H5N1 influenza virus infected the epithelium than the counterpart infected by the seasonal influenza H1N1 virus infected. Nϕs were equally susceptible to H5N1 and H1N1 virus infection with similar viral gene transcription. Productive replication was observed in H5N1 infected Nϕs. Both H5N1 and H1N1 infected Nϕs induced cytokines and chemokines including TNF-α, IFN-β, CXCL10, MIP-1α and IL-8. This inferred a more intense inflammatory response posed by H5N1 than H1N1 virus. Strikingly, NADPH oxidase-independent NET formation was observed in H1N1 infected Nϕs at 6 hpi while no NET formation was observed upon H5N1 infection. Conclusion Our data is the first to demonstrate that NET formation is abrogated in H5N1 influenza virus infection. Its contribution to the differential severity of H5N1 disease requires further investigation.


2008 ◽  
Vol 52 (11) ◽  
pp. 3889-3897 ◽  
Author(s):  
Natalia A. Ilyushina ◽  
Alan Hay ◽  
Neziha Yilmaz ◽  
Adrianus C. M. Boon ◽  
Robert G. Webster ◽  
...  

ABSTRACT We studied the effects of a neuraminidase inhibitor (oseltamivir) and an inhibitor of influenza virus polymerases (ribavirin) against two highly pathogenic H5N1 influenza viruses. In vitro, A/Vietnam/1203/04 virus (clade 1) was highly susceptible to oseltamivir carboxylate (50% inhibitory concentration [IC50] = 0.3 nM), whereas A/Turkey/15/06 virus (clade 2.2) had reduced susceptibility (IC50 = 5.5 nM). In vivo, BALB/c mice were treated with oseltamivir (1, 10, 50, or 100 mg/kg of body weight/day), ribavirin (37.5, 55, or 75 mg/kg/day), or the combination of both drugs for 8 days, starting 4 h before virus inoculation. Monotherapy produced a dose-dependent antiviral effect against the two H5N1 viruses in vivo. Three-dimensional analysis of the drug-drug interactions revealed that oseltamivir and ribavirin interacted principally in an additive manner, with several exceptions of marginal synergy or marginal antagonism at some concentrations. The combination of ribavirin at 37.5 mg/kg/day and oseltamivir at 1 mg/kg/day and the combination of ribavirin at 37.5 mg/kg/day and oseltamivir at 10 mg/kg/day were synergistic against A/Vietnam/1203/04 and A/Turkey/15/06 viruses, respectively. These optimal oseltamivir-ribavirin combinations significantly inhibited virus replication in mouse organs, prevented the spread of H5N1 viruses beyond the respiratory tract, and abrogated the cytokine response (P < 0.01). Importantly, we observed clear differences between the efficacies of the drug combinations against two H5N1 viruses: higher doses were required for the protection of mice against A/Turkey/15/06 virus than for the protection of mice against A/Vietnam/1203/04 virus. Our preliminary results suggest that oseltamivir-ribavirin combinations can have a greater or lesser antiviral effect than monotherapy, depending on the H5N1 virus and the concentrations used.


Sign in / Sign up

Export Citation Format

Share Document