ha protein
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 56)

H-INDEX

25
(FIVE YEARS 4)

mBio ◽  
2021 ◽  
Author(s):  
Huihui Kong ◽  
Shufang Fan ◽  
Kosuke Takada ◽  
Masaki Imai ◽  
Gabriele Neumann ◽  
...  

The hemagglutinin (HA) protein of influenza viruses serves as the receptor-binding protein and is the principal target of the host immune system. The antigenic epitopes in the receptor-binding region are known to tolerate mutations, but here, we show that even deletions of 12 or 16 amino acids in this region can be accommodated.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010098
Author(s):  
Fangtao Li ◽  
Jiyu Liu ◽  
Jizhe Yang ◽  
Haoran Sun ◽  
Zhimin Jiang ◽  
...  

H5N6 highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4 not only exhibits unprecedented intercontinental spread in poultry, but can also cause serious infection in humans, posing a public health threat. Phylogenetic analyses show that 40% (8/20) of H5N6 viruses that infected humans carried H9N2 virus-derived internal genes. However, the precise contribution of H9N2 virus-derived internal genes to H5N6 virus infection in humans is unclear. Here, we report on the functional contribution of the H9N2 virus-derived matrix protein 1 (M1) to enhanced H5N6 virus replication capacity in mammalian cells. Unlike H5N1 virus-derived M1 protein, H9N2 virus-derived M1 protein showed high binding affinity for H5N6 hemagglutinin (HA) protein and increased viral progeny particle release in different mammalian cell lines. Human host factor, G protein subunit beta 1 (GNB1), exhibited strong binding to H9N2 virus-derived M1 protein to facilitate M1 transport to budding sites at the cell membrane. GNB1 knockdown inhibited the interaction between H9N2 virus-derived M1 and HA protein, and reduced influenza virus-like particles (VLPs) release. Our findings indicate that H9N2 virus-derived M1 protein promotes avian H5N6 influenza virus release from mammalian, in particular human cells, which could be a major viral factor for H5N6 virus cross-species infection.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2420
Author(s):  
Weiyang Sun ◽  
Zhenfei Wang ◽  
Yue Sun ◽  
Dongxu Li ◽  
Menghan Zhu ◽  
...  

H5N1 influenza virus is a threat to public health worldwide. The virus can cause severe morbidity and mortality in humans. We constructed an H5N1 influenza candidate virus vaccine from the A/chicken/Guizhou/1153/2016 strain that was recommended by the World Health Organization. In this study, we designed an H5N1 chimeric influenza A/B vaccine based on a cold-adapted (ca) influenza B virus B/Vienna/1/99 backbone. We modified the ectodomain of H5N1 hemagglutinin (HA) protein, while retaining the packaging signals of influenza B virus, and then rescued a chimeric cold-adapted H5N1 candidate influenza vaccine through a reverse genetic system. The chimeric H5N1 vaccine replicated well in eggs and the Madin-Darby Canine Kidney cells. It maintained a temperature-sensitive and cold-adapted phenotype. The H5N1 vaccine was attenuated in mice. Hemagglutination inhibition (HAI) antibodies, micro-neutralizing (MN) antibodies, and IgG antibodies were induced in immunized mice, and the mucosal IgA antibody responses were detected in their lung lavage fluids. The IFN-γ-secretion and IL-4-secretion by the mouse splenocytes were induced after stimulation with the specific H5N1 HA protein. The chimeric H5N1 candidate vaccine protected mice against lethal challenge with a wild-type highly pathogenic avian H5N1 influenza virus. The chimeric H5 candidate vaccine is thus a potentially safe, attenuated, and reassortment-incompetent vaccine with circulating A viruses.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Heidi Peck ◽  
Karen L. Laurie ◽  
Steve Rockman ◽  
Vivian Leung ◽  
Hilda Lau ◽  
...  

AbstractInfluenza vaccines are utilised to combat seasonal and pandemic influenza. The key to influenza vaccination currently is the availability of candidate vaccine viruses (CVVs). Ideally, CVVs reflect the antigenic characteristics of the circulating virus, which may vary depending upon the isolation method. For traditional inactivated egg-based vaccines, CVVs are isolated in embryonated chicken eggs, while for cell-culture production, CVV’s are isolated in either embryonated eggs or qualified cell lines. We compared isolation rates, growth characteristics, genetic stability and antigenicity of cell and egg CVV’s derived from the same influenza-positive human clinical respiratory samples collected from 2008–2020. Influenza virus isolation rates in MDCK33016PF cells were twice that of eggs and mutations in the HA protein were common in egg CVVs but rare in cell CVVs. These results indicate that fully cell-based influenza vaccines will improve the choice, match and potentially the effectiveness, of seasonal influenza vaccines compared to egg-based vaccines.


2021 ◽  
Vol 13 (08) ◽  
pp. 23-31
Author(s):  
Sədaqət Sədrəddin qızı Camıyeva ◽  

Nutrition is the most important natural factor in human health. In modern times humanity often faces the malnutrition worldwide. At present, many countries of the world are making new contributions to breeding. They cultivate many plants in this direction and select the best and most valuable species and varieties. Plant products are utilized as food, forage, and raw materials in the light industry. From this point of view, study of horse beans is important. Horse beans are easy to grow. Amino acids, proteins, and vitamins in their composition are well absorbed by the human body. Humans get their plant protein from bread, which is part of their daily diet. This means less calories and more protein. The creation of new products is of particular interest. From this point of view, the research work on this topic is relevant and demand of the day. Quality indicators in the nursery resistant to ascochitosis (FBIABN): protein in FLIP16-029FB was 32.9%, fat in FLIP17-045FB was 6.90% and the highest humidity was found in FLIP17-045FB-13.9%. Oil yield showed variation between 0.27-3.13% (c/ha), protein yield showed variation between 2.6–16.6% (c/ ha), yield showed variation between 10,0-50.9(c/ha). In the nursery resistant to chocolate spot disease (FBICSN), protein indicators in Rebeya 40 were 30.4%. Oil content in Rebeya 40 was 8.37%. Humidity indicators showed 13.5%. Oil content showed variation between 0.34-2.70% (c/ha), protein yield between 2.55-9.4% (c/ha), yield varied between 10.0-47.5(c/ha).Quality indicators in mechanical harvesting nursery (FBIMHN): protein in FLIP 16-214 was (27.6%). Oil content in FLIP17-055FB was 5.39%. Humidity indicators in FLIP17-055 FB were 17.1%. Oil yield showed variation between 0.27-1.84% (c/ha), protein yield showed vatiation between 1.02-9.94% (c/ha), productivity showed variation between 6.0-39.9% (c/ha). In the seeds of the studied varieties, between productivity and oil yield per hectare, r = 0.983**, productivity and protein yield per hectare, r = 0.962** positive correlation was observed. From this dependence, it is possible to create high-yield and-quality varieties by breeding. Key words: horse bean, protein, fat, humidity, quality, yield


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 757
Author(s):  
Zenoviy Tkachuk ◽  
Nataliia Melnichuk ◽  
Roman O. Nikolaiev ◽  
Kosma Szutkowski ◽  
Igor Zhukov

Hemagglutinin (HA), the class I influenza A virus protein is responsible for the attachment of virus particles to the cell by binding to glycan receptors, subsequent virion internalization, and cell entry. Consequently, the importance of HA makes it a primary target for the development of anti-influenza drugs. The natural oligoribonucleotides (ORNs) as well as their derivatives functionalized with D-mannitol (ORNs-D-M) possess anti-influenza properties in vitro and in vivo due to interaction with HA receptor sites. This activity suppresses the viral infection in host cells. In the present work, the complexes of ORNs and ORNs-D-M with HA protein were studied by agglutination assay, fluorescence spectroscopy, as well as molecular docking simulations. Acquired experimental data exhibited a decrease in HA titer by 32 times after incubation with the ORNs-D-M for 0.5–24 h. Quenching fluorescence intensity of the HA suggests that titration by ORNs and ORNs-D-M probably leads to changes in the HA structure. Detailed structural data were obtained with the molecular docking simulations performed for ORNs and ORNs-D-M ligands containing three and six oligoribonucleotides. The results reveal that a majority of the ORNs and ORNs-D-M bind in a non-specific way to the receptor-binding domain of the HA protein. The ligand’s affinity to the hemagglutinin was estimated at the micromolar level. Presented experimental data confirmed that both natural ORNs and functionalized ORNs-D-M inhibit the interactions between HA and glycan receptors and demonstrate anti-influenza activity.


2021 ◽  
Author(s):  
Meng Hu ◽  
Jeremy Jones ◽  
Balaji Banoth ◽  
Chet R Ojha ◽  
Jeri Carol Crumpton ◽  
...  

Understanding how animal influenza A viruses (IAVs) acquire airborne transmissibility in humans and ferrets is needed to prepare for and respond to pandemics. Previously, we showed that hemagglutinin (HA) protein stabilization promotes replication and airborne transmission in ferrets using swine H1N1 gamma strains P4 and G15 (Hu et al. 2020). Here, we show that a combination of enhanced polymerase activity and HA stability is necessary for efficient airborne transmission in ferrets and that minor variants containing both properties are quickly selected. P4 and G15 were found to have decreased polymerase activity and relatively poor HA stability, respectively. Polymerase-enhancing variant PA-S321 was selected in half of P4 isolates that airborne-transmitted in ferrets. HA-stabilizing variant HA1-S210 was selected in all G15-inoculated ferrets and was transmitted. With an efficient polymerase and a stable HA, purified G15-HA1-S210 had earlier and higher peak titers in inoculated ferrets and was recovered at a higher frequency after airborne transmission than P4 and G15. Pandemic risk-assessment studies may benefit from deep sequencing capable of identifying minor variants with human-adapted traits.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1896
Author(s):  
Cynthia Y. Tang ◽  
Karen Segovia ◽  
Jane A. McElroy ◽  
Tao Li ◽  
Minhui Guan ◽  
...  

Influenza B viruses (IBVs) are causing an increasing burden of morbidity and mortality, yet the prevalence of culture-adapted mutations in human seasonal IBVs are unclear. We collected 368 clinical samples from patients with influenza-like illness in Missouri during the 2019–2020 influenza season and recovered 146 influenza isolates including 38 IBV isolates. Of MDCK-CCL34, MDCK-Siat1, and humanized MDCK (hCK), hCK showed the highest virus recovery efficiency. All Missourian IBVs belonged to the Victoria V1A.3 lineage, all of which contained a three-amino acid deletion on the HA protein and were antigenically distant from the Victoria lineage IBV vaccine strain used during that season. By comparing genomic sequences of these IBVs in 31 paired samples, eight cell-adapted nonsynonymous mutations were identified, with the majority in the RNA polymerase. Analyses of IBV clinical sample–isolate pairs from public databases further showed that cell- and egg-adapted mutations occurred more widely in viral proteins, including the receptor and antibody binding sites on HA. Our study suggests that hCK is an effective platform for IBV isolation and that culture-adapted mutations may occur during IBV isolation. As culture-adapted mutations may affect subsequent virus studies and vaccine development, the knowledge from this study may help optimize strategies for influenza surveillance, vaccine strain selection, and vaccine development.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009321
Author(s):  
Ketaki Ganti ◽  
Julianna Han ◽  
Balaji Manicassamy ◽  
Anice C. Lowen

Influenza A virus [IAV] genomes comprise eight negative strand RNAs packaged into virions in the form of viral ribonucleoproteins [vRNPs]. Rab11a plays a crucial role in the transport of vRNPs from the nucleus to the plasma membrane via microtubules, allowing assembly and virus production. Here, we identify a novel function for Rab11a in the inter-cellular transport of IAV vRNPs using tunneling nanotubes [TNTs]as molecular highways. TNTs are F-Actin rich tubules that link the cytoplasm of nearby cells. In IAV-infected cells, Rab11a was visualized together with vRNPs in these actin-rich intercellular connections. To better examine viral spread via TNTs, we devised an infection system in which conventional, virion-mediated, spread was not possible. Namely, we generated HA-deficient reporter viruses which are unable to produce progeny virions but whose genomes can be replicated and trafficked. In this system, vRNP transfer to neighboring cells was observed and this transfer was found to be dependent on both actin and Rab11a. Generation of infectious virus via TNT transfer was confirmed using donor cells infected with HA-deficient virus and recipient cells stably expressing HA protein. Mixing donor cells infected with genetically distinct IAVs furthermore revealed the potential for Rab11a and TNTs to serve as a conduit for genome mixing and reassortment in IAV infections. These data therefore reveal a novel role for Rab11a in the IAV life cycle, which could have significant implications for within-host spread, genome reassortment and immune evasion.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1400
Author(s):  
Xia Lin ◽  
Fangmei Lin ◽  
Tingting Liang ◽  
Mariette F. Ducatez ◽  
Mark Zanin ◽  
...  

The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.


Sign in / Sign up

Export Citation Format

Share Document