scholarly journals Protein Kinase CK2 Phosphorylation of EB2 Regulates Its Function in the Production of Epstein-Barr Virus Infectious Viral Particles

2007 ◽  
Vol 81 (21) ◽  
pp. 11850-11860 ◽  
Author(s):  
Cahora Medina-Palazon ◽  
Henri Gruffat ◽  
Fabrice Mure ◽  
Odile Filhol ◽  
Valérie Vingtdeux-Didier ◽  
...  

ABSTRACT The Epstein-Barr Virus (EBV) early protein EB2 (also called BMLF1, Mta, or SM) promotes the nuclear export of a subset of early and late viral mRNAs and is essential for the production of infectious virions. We show here that in vitro, protein kinase CK2α and -β subunits bind both individually and, more efficiently, as a complex to the EB2 N terminus and that the CK2β regulatory subunit also interacts with the EB2 C terminus. Immunoprecipitated EB2 has CK2 activity that phosphorylates several sites within the 80 N-terminal amino acids of EB2, including Ser-55, -56, and -57, which are localized next to the nuclear export signal. EB2S3E, the phosphorylation-mimicking mutant of EB2 at these three serines, but not the phosphorylation ablation mutant EB2S3A, efficiently rescued the production of infectious EBV particles by HEK293BMLF1-KO cells harboring an EB2-defective EBV genome. The defect of EB2S3A in transcomplementing 293BMLF1-KO cells was not due to impaired nucleocytoplasmic shuttling of the mutated protein but was associated with a decrease in the cytoplasmic accumulation of several late viral mRNAs. Thus, EB2-mediated production of infectious EBV virions is regulated by CK2 phosphorylation at one or more of the serine residues Ser-55, -56, and -57.

2006 ◽  
Vol 80 (11) ◽  
pp. 5125-5134 ◽  
Author(s):  
Risa Asai ◽  
Ai Kato ◽  
Kentaro Kato ◽  
Mikiko Kanamori-Koyama ◽  
Ken Sugimoto ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) BGLF4 is a viral protein kinase that is expressed in the lytic phase of infection and is packaged in virions. We report here that BGLF4 is a tegument protein that dissociates from the virion in a phosphorylation-dependent process. We also present evidence that BGLF4 interacts with and phosphorylates BZLF1, a key viral regulator of lytic infection. These conclusions are based on the following observations. (i) In in vitro tegument release assays, a significant fraction of BGLF4 was released from virions in the presence of physiological NaCl concentrations. (ii) Addition of physiological concentrations of ATP and MgCl2 to virions enhanced BGLF4 release, but phosphatase treatment of virions significantly reduced BGLF4 release. (iii) A recombinant protein containing a domain of BZLF1 was specifically phosphorylated by purified recombinant BGLF4 in vitro, and BGLF4 altered BZLF1 posttranslational modification in vivo. (iv) BZLF1 was specifically coimmunoprecipitated with BGLF4 in 12-O-tetradecanoylphorbol-13-acetate-treated B95-8 cells and in COS-1 cells transiently expressing both of these viral proteins. (v) BGLF4 and BZLF1 were colocalized in intranuclear globular structures, resembling the viral replication compartment, in Akata cells treated with anti-human immunoglobulin G. Our results suggest that BGLF4 functions not only in lytically infected cells by phosphorylating viral and cellular targets but also immediately after viral penetration like other herpesvirus tegument proteins.


2009 ◽  
Vol 83 (24) ◽  
pp. 12759-12768 ◽  
Author(s):  
Franceline Juillard ◽  
Edwige Hiriart ◽  
Nicolas Sergeant ◽  
Valérie Vingtdeux-Didier ◽  
Hervé Drobecq ◽  
...  

ABSTRACT The Epstein-Barr virus early protein EB2 (also called BMLF1, Mta, or SM), which allows the nuclear export of a subset of early and late viral mRNAs derived from intronless genes, is essential for the production of infectious virions. An important feature of mRNA export factors is their capacity to shuttle continuously between the nucleus and the cytoplasm. In a previous study, we identified a novel CRM1-independent transferable nuclear export signal (NES) at the N terminus of EB2, between amino acids 61 and 146. Here we show that this NES contains several small arginine-rich domains that cooperate to allow efficient interaction with TAP/NXF1. Recruitment of TAP/NXF1 correlates with this NES-mediated efficient nuclear export when it is fused to a heterologous protein. Moreover, the NES can export mRNAs bearing MS2 RNA-binding sites from the nucleus when tethered to the RNA via the MS2 phage coat protein RNA-binding domain.


2002 ◽  
Vol 278 (1) ◽  
pp. 335-342 ◽  
Author(s):  
Edwige Hiriart ◽  
Géraldine Farjot ◽  
Henri Gruffat ◽  
Minh Vu Chuong Nguyen ◽  
Alain Sergeant ◽  
...  

2009 ◽  
Vol 83 (22) ◽  
pp. 11635-11644 ◽  
Author(s):  
Zhao Han ◽  
Dinesh Verma ◽  
Chelsey Hilscher ◽  
Dirk P. Dittmer ◽  
Sankar Swaminathan

ABSTRACT Epstein-Barr virus (EBV) SM protein is an essential nuclear shuttling protein expressed by EBV early during the lytic phase of replication. SM acts to increase EBV lytic gene expression by binding EBV mRNAs and enhancing accumulation of the majority of EBV lytic cycle mRNAs. SM increases target mRNA stability and nuclear export, in addition to modulating RNA splicing. SM and its homologs in other herpesvirus have been hypothesized to function in part by binding viral RNAs and recruiting cellular export factors. Although activation of gene expression by SM is gene specific, it is unknown whether SM binds to mRNA in a specific manner or whether its RNA binding is target independent. SM-mRNA complexes were isolated from EBV-infected B-lymphocyte cell lines induced to permit lytic EBV replication, and a quantitative measurement of mRNAs corresponding to all known EBV open reading frames was performed by real-time quantitative reverse transcription-PCR. The results showed that although SM has broad RNA binding properties, there is a clear hierarchy of affinities among EBV mRNAs with respect to SM complex formation. In vitro binding assays with two of the most highly SM-associated transcripts suggested that SM binds preferentially to specific sequences or structures present in noncoding regions of some EBV mRNAs. Furthermore, the presence of these sequences conferred responsiveness to SM. These data are consistent with a mechanism of action similar to that of hnRNPs, which exert sequence-specific effects on gene expression despite having multiple degenerate consensus binding sites common to a large number of RNAs.


2004 ◽  
Vol 78 (22) ◽  
pp. 12140-12146 ◽  
Author(s):  
E. Gershburg ◽  
M. Marschall ◽  
K. Hong ◽  
J. S. Pagano

ABSTRACT The protein kinase (PK) encoded by the Epstein-Barr Virus (EBV) BGLF4 gene is the only EBV protein kinase. The expression pattern of EBV PK during the reactivation of the viral lytic cycle and the subcellular localization of the protein were analyzed with a polyclonal antiserum raised against a peptide corresponding to the N terminus of EBV PK. Based on previously published data (E. Gershburg and J. S. Pagano, J. Virol. 76:998-1003, 2002) and the expression pattern described here, we conclude that EBV PK is an early protein that requires viral-DNA replication for maximum expression. By biochemical fractionation, the protein could be detected mainly in the nuclear fraction 4 h after viral reactivation in Akata cells. Nuclear localization could be visualized by indirect immunofluorescence in HeLa cells transiently expressing EBV BGLF4 in the absence of other viral products. Transient expression of 3′-terminal deletion mutants of EBV BGLF4 resulted in cytoplasmic localization, confirming the presence of a nuclear localization site in the C-terminal region of the protein. In contrast to the wild-type EBV PK, all of the mutants were unable to hyperphosphorylate EA-D during coexpression or to phosphorylate ganciclovir, as measured by an in-cell activity assay. Thus, the results demonstrate that the nuclear localization, as well as the kinase activity, of BGFL4 is dependent on an intact C-terminal region.


2009 ◽  
Vol 83 (14) ◽  
pp. 7109-7116 ◽  
Author(s):  
Paul D. Ling ◽  
Jie Tan ◽  
RongSheng Peng

ABSTRACT Epstein-Barr virus (EBV) EBNA-LP is a transcriptional coactivator of EBNA2 that works though interaction with the promyelocytic leukemia nuclear-body-associated protein Sp100A. EBNA-LP localizes predominantly in the nucleus through the action of nuclear localization signals in the repeated regions of the protein. EBNA-LP has also been detected in the cytoplasm, and a previous study suggested that some of the EBNA-LP coactivation function is mediated by relocalizing histone deacetylase 4 (HDAC4) from the nucleus to the cytoplasm. Although EBNA-LP can be found in the cytoplasm, it has no obvious nuclear export signal, and there is no direct evidence for active shuttling between these cellular compartments. Whether active shuttling between the nucleus and cytoplasm is required for coactivation remains to be clarified. To address these issues, we tested a variety of EBNA-LP isoforms and mutants for nuclear-cytoplasmic shuttling activity in an interspecies heterokaryon assay and for the ability to associate with HDAC4. EBNA-LP isoforms smaller than 42 kDa shuttle efficiently in the heterokaryon assay via a crm-1-independent mechanism. In addition, no specific EBNA-LP domain that mediates nuclear export could be identified. In contrast, an EBNA-LP 62-kDa isoform does not demonstrate detectable shuttling in the heterokaryon assay yet still coactivates EBNA2 similarly to the smaller EBNA-LP isoforms. All of the EBNA-LP mutants tested, including the coactivation-deficient ΔCR3 mutant and the nonshuttling 62-kDa isoform, were capable of associating with HDAC4. Taken together, our results suggest that simple diffusion may account for the nuclear export observed with smaller isoforms of EBNA-LP, that nuclear-cytoplasmic shuttling is not required for efficient EBNA-LP coactivation function, and that competence for HDAC4 association is not sufficient to mediate nuclear-cytoplasmic shuttling or EBNA-LP coactivation in the absence of a functional interaction with Sp100A.


2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Richard Park ◽  
George Miller

ABSTRACTProfound alterations in host cell nuclear architecture accompany the lytic phase of Epstein-Barr virus (EBV) infection. Viral replication compartments assemble, host chromatin marginalizes to the nuclear periphery, cytoplasmic poly(A)-binding protein translocates to the nucleus, and polyadenylated mRNAs are sequestered within the nucleus. Virus-induced changes to nuclear architecture that contribute to viral host shutoff (VHS) must accommodate selective processing and export of viral mRNAs. Here we describe additional previously unrecognized nuclear alterations during EBV lytic infection in which viral and cellular factors that function in pre-mRNA processing and mRNA export are redistributed. Early during lytic infection, before formation of viral replication compartments, two cellular pre-mRNA splicing factors, SC35 and SON, were dispersed from interchromatin granule clusters, and three mRNA export factors, Y14, ALY, and NXF1, were depleted from the nucleus. During late lytic infection, virus-induced nodular structures (VINORCs) formed at the periphery of viral replication compartments. VINORCs were composed of viral (BMLF1 and BGLF5) and cellular (SC35, SON, SRp20, and NXF1) proteins that mediate pre-mRNA processing and mRNA export. BHLF1 long noncoding RNA was invariably found in VINORCs. VINORCs did not contain other nodular nuclear cellular proteins (PML or coilin), nor did they contain viral proteins (BRLF1 or BMRF1) found exclusively within replication compartments. VINORCs are novel EBV-induced nuclear structures. We propose that EBV-induced dispersal and depletion of pre-mRNA processing and mRNA export factors during early lytic infection contribute to VHS; subsequent relocalization of these pre-mRNA processing and mRNA export proteins to VINORCs and viral replication compartments facilitates selective processing and export of viral mRNAs.IMPORTANCEIn order to make protein, mRNA transcribed from DNA in the nucleus must enter the cytoplasm. Nuclear export of mRNA requires correct processing of mRNAs by enzymes that function in splicing and nuclear export. During the Epstein-Barr virus (EBV) lytic cycle, nuclear export of cellular mRNAs is blocked, yet export of viral mRNAs is facilitated. Here we report the dispersal and dramatic reorganization of cellular (SC35, SON, SRp20, Y14, ALY, and NXF1) and viral (BMLF1 and BGLF5) proteins that play key roles in pre-mRNA processing and export of mRNA. These virus-induced nuclear changes culminate in formation of VINORCs, novel nodular structures composed of viral and cellular RNA splicing and export factors. VINORCs localize to the periphery of viral replication compartments, where viral mRNAs reside. These EBV-induced changes in nuclear organization may contribute to blockade of nuclear export of host mRNA, while enabling selective processing and export of viral mRNA.


2015 ◽  
Vol 89 (11) ◽  
pp. 5968-5980 ◽  
Author(s):  
Kun-Yi Lai ◽  
Ya-Ching Chou ◽  
Jiun-Han Lin ◽  
Yi Liu ◽  
Kai-Min Lin ◽  
...  

ABSTRACTEpstein-Barr virus (EBV), an oncogenic herpesvirus, has the potential to immortalize primary B cells into lymphoblastoid cell lines (LCLs)in vitro. During immortalization, several EBV products induce cytokines or chemokines, and most of these are required for the proliferation of LCLs. Interleukin-32 (IL-32), a recently discovered proinflammatory cytokine, is upregulated after EBV infection, and this upregulation is detectable in all LCLs tested. EBV latent membrane protein 1 (LMP1) is responsible for inducing IL-32 expression at the mRNA and protein levels. Mechanistically, we showed that this LMP1 induction is provided by the p65 subunit of NF-κB, which binds to and activates the IL-32 promoter. Furthermore, the short hairpin RNA (shRNA)-mediated depletion of endogenous LMP1 and p65 in LCLs suppressed IL-32 expression, further suggesting that LMP1 is the key factor that stimulates IL-32 in LCLs via the NF-κB p65 pathway. Functionally, knockdown of IL-32 in LCLs elicits viral reactivation and affects cytokine expression, but it has no impact on cell proliferation and apoptosis. Of note, we reveal the mechanism whereby IL-32 is involved in the maintenance of EBV viral latency by inactivation of Zta promoter activity. This atypical cytoplasmic IL-32 hijacks the Zta activator protein kinase Cδ (PKCδ) and inhibits its translocation from the cytoplasm to the nucleus, where PKCδ binds to the Zta promoter and activates lytic cycle progression. These novel findings reveal that IL-32 is involved in the maintenance of EBV latency in LCLs. This finding may provide new information to explain how EBV maintains latency, in addition to viral chromatin structure and epigenetic modification.IMPORTANCEEBV persists in two states, latency and lytic replication, which is a unique characteristic of human infections. So far, little is known about how herpesviruses maintain latency in particular tissues or cell types. EBV is an excellent model to study this question because more than 90% of people are latently infected. EBV can immortalize primary B cells into lymphoblastoid cell linesin vitro. Expression of IL-32, a novel atypical cytoplasmic proinflammatory cytokine, increased after infection. The expression of IL-32 was controlled by LMP1. In investigating the regulatory mechanism, we demonstrated that the p65 subunit of NF-κB is required for this upregulation. Of note, the important biological activity of IL-32 was to trap protein kinase Cδ in the cytoplasm and prevent it from binding to the Zta promoter, which is the key event for EBV reaction. So, the expression of LMP1-induced IL-32 plays a role in the maintenance of EBV latency.


2000 ◽  
Vol 74 (7) ◽  
pp. 3093-3104 ◽  
Author(s):  
Mei-Ru Chen ◽  
Shin-Jye Chang ◽  
Hsiaowen Huang ◽  
Jen-Yang Chen

ABSTRACT The Epstein-Barr virus (EBV) open reading frame BGLF4 was identified as a potential Ser/Thr protein kinase gene through the recognition of amino acid sequence motifs characteristic of conserved regions within the catalytic domains of protein kinases. In order to investigate this potential kinase activity, BGLF4 was expressed inEscherichia coli and the purified protein was used to generate a specific antiserum. Recombinant vaccinia virus vTF7-3, which expresses the T7 RNA polymerase, was used to infect 293 and 293T cells after transient transfection with a plasmid containing BGLF4 under the control of the T7 promoter. Autophosphorylation of the BGLF4 protein was demonstrated using the specific antiserum in an immune complex kinase assay. In addition, EBNA-1-tagged BGLF4 and EBNA-1 monoclonal antibody 5C11 were used to demonstrate the specificity of the kinase activity and to locate BGLF4 in the cytoplasm of transfected cells. Manganese ions were found to be essential for autophosphorylation of BGLF4, and magnesium can stimulate the activity. BGLF4 can utilize GTP, in addition to ATP, as a phosphate donor in this assay. BGLF4 can phosphorylate histone and casein in vitro. Among the potential viral protein substrates we examined, the EBV early antigen (EA-D, BMRF1), a DNA polymerase accessory factor and an important transactivator during lytic infection, was found to be phosphorylated by BGLF4 in vitro. Amino acids 1 to 26 of BGLF4, but not the predicted conserved catalytic domain, were found to be essential for autophosphorylation of BGLF4.


2009 ◽  
Vol 90 (10) ◽  
pp. 2331-2341 ◽  
Author(s):  
Koichi Ricardo Katsumura ◽  
Seiji Maruo ◽  
Yi Wu ◽  
Teru Kanda ◽  
Kenzo Takada

The Epstein–Barr virus (EBV) immediate-early transactivator BZLF1 plays a key role in switching EBV infection from the latent to the lytic form by stimulating the expression cascade of lytic genes; it also regulates the expression of several cellular genes. Recently, we reported that BZLF1 is expressed in primary human B cells early after EBV infection. To investigate whether this BZLF1 expression early after infection plays a role in the EBV-induced growth transformation of primary B cells, we generated BZLF1-knockout EBV and quantitatively evaluated its transforming ability compared with that of wild-type EBV. We found that the 50 % transforming dose of BZLF1-knockout EBV was quite similar to that of wild-type EBV. Established lymphoblastoid cell lines (LCLs) harbouring BZLF1-knockout EBV were indistinguishable from LCLs harbouring wild-type EBV in their pattern of latent gene expression and in their growth in vitro. Furthermore, the copy numbers of EBV episomes were very similar in the LCLs harbouring BZLF1-knockout EBV and in those harbouring wild-type EBV. These data indicate that disrupting BZLF1 expression in the context of the EBV genome, and the resultant inability to enter lytic replication, have little impact on the growth of LCLs and the steady-state copy number of EBV episomes in established LCLs.


Sign in / Sign up

Export Citation Format

Share Document