histone deacetylase 4
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 40)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Xiaodong Gu ◽  
Fei Li ◽  
Yangyang Gao ◽  
Xianda Che ◽  
Pengcui Li

Abstract Background The aim of this study was to evaluate whether histone deacetylase 4 S246/467/632A mutant (m-HDAC4) has enhanced function at histone deacetylase 4 (HDAC4) to attenuate cartilage degeneration in a rat model of osteoarthritis (OA). Methods Chondrocytes were infected with Ad-m-HDAC4-GFP or Ad-HDAC4-GFP for 24 h, incubated with interleukin-1β (IL-1β 10 ng/mL) for 24 h, and then measured by RT-qPCR. Male Sprague-Dawley rats (n = 48) were randomly divided into four groups and transduced with different vectors: ACLT/Ad-GFP, ACLT/Ad-HDAC4-GFP, ACLT/Ad-m-HDAC4-GFP, and sham/Ad-GFP. All rats received intra-articular injections 48 h after the operation and every 3 weeks thereafter. Cartilage damage was assessed using radiography and Safranin O staining and quantified using the OARSI score. The hypertrophic and anabolic molecules were detected by immunohistochemistry and RT-qPCR. Results M-HDAC4 decreased the expression levels of Runx-2, Mmp-13, and Col 10a1, but increased the levels of Col 2a1 and ACAN more effectively than HDAC4 in the IL-1β-induced chondrocyte OA model; upregulation of HDAC4 and m-HDAC4 in the rat OA model suppressed Runx-2 and MMP-13 production, and enhanced Col 2a1 and ACAN synthesis. Stronger Safranin O staining was detected in rats treated with m-HDAC4 than in those treated with HDAC4. The resulting OARSI scores were lower in the Ad-m-HDAC4 group (5.80 ± 0.45) than in the Ad-HDAC4 group (9.67 ± 1.83, P = 0.045). The OARSI scores were highest in rat knees that underwent ACLT treated with Ad-GFP control adenovirus vector (14.93 ± 2.14, P = 0.019 compared with Ad-HDAC4 group; P = 0.003 compared with Ad-m-HDAC4 group). Lower Runx-2 and MMP-13 production, and stronger Col 2a1 and ACAN synthesis were detected in rats treated with m-HDAC4 than in those treated with HDAC4. Conclusions M-HDAC4 repressed chondrocyte hypertrophy and induced chondrocyte anabolism in the nucleus. M-HDAC4 was more effective in attenuating articular cartilage damage than HDAC4.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gisele Fernanda Assine Picchi-Constante ◽  
Eloise Pavão Guerra-Slompo ◽  
Ana Carolina Tahira ◽  
Monica Visnieski Alcantara ◽  
Murilo Sena Amaral ◽  
...  

AbstractTrypanosoma cruzi—the causative agent of Chagas disease—like other kinetoplastids, relies mostly on post-transcriptional mechanisms for regulation of gene expression. However, trypanosomatids undergo drastic changes in nuclear architecture and chromatin structure along their complex life cycle which, combined with a remarkable set of reversible histone post-translational modifications, indicate that chromatin is also a target for control of gene expression and differentiation signals in these organisms. Chromatin-modifying enzymes have a direct impact on gene expression programs and DNA metabolism. In this work, we have investigated the function of T. cruzi histone deacetylase 4 (TcHDAC4). We show that, although TcHDAC4 is not essential for viability, metacyclic trypomastigote TcHDAC4 null mutants show a thin cell body and a round and less condensed nucleus located very close to the kinetoplast. Sixty-four acetylation sites were quantitatively evaluated, which revealed H2AT85ac, H4K10ac and H4K78ac as potential target sites of TcHDAC4. Gene expression analyses identified three chromosomes with overrepresented regions of differentially expressed genes in the TcHDAC4 knockout mutant compared with the wild type, showing clusters of either up or downregulated genes. The adjacent chromosomal location of some of these genes indicates that TcHDAC4 participates in gene expression regulation during T. cruzi differentiation.


Author(s):  
Guohui Zhong ◽  
Dingsheng Zhao ◽  
Jianwei Li ◽  
Zifan Liu ◽  
Junjie Pan ◽  
...  

Cardiac muscle is extremely sensitive to changes in loading conditions; the microgravity during space flight can cause cardiac remodeling and function decline. At present, the mechanism of microgravity-induced cardiac remodeling remains to be revealed. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is an important activator of pressure overload-induced cardiac remodeling by stabilizing disheveled segment polarity proteins 2 (DVL2) and activating the calcium-calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 4 (HDAC4)/myocyte-specific enhancer factor 2C (MEF2C) axis. However, the role of WWP1 in cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether WWP1 was also involved in the regulation of cardiac remodeling caused by microgravity. Firstly, we detected the expression of WWP1 and DVL2 in the heart from mice and monkeys after simulated microgravity using western blotting and immunohistochemistry. Secondly, WWP1 knockout (KO) and wild-type (WT) mice were subjected to tail suspension (TS) to simulate microgravity effect. We assessed the cardiac remodeling in morphology and function through a histological analysis and echocardiography. Finally, we detected the phosphorylation levels of CaMKII and HDAC4 in the hearts from WT and WWP1 KO mice after TS. The results revealed the increased expression of WWP1 and DVL2 in the hearts both from mice and monkeys after simulated microgravity. WWP1 deficiency alleviated simulated microgravity-induced cardiac atrophy and function decline. The histological analysis demonstrated WWP1 KO inhibited the decreases in the size of individual cardiomyocytes of mice after tail suspension. WWP1 KO can inhibit the activation of the DVL2/CaMKII/HDAC4 pathway in the hearts of mice induced by simulated microgravity. These results demonstrated WWP1 as a potential therapeutic target for cardiac remodeling and function decline induced by simulated microgravity.


2021 ◽  
Vol 14 (10) ◽  
pp. 1032
Author(s):  
Markus Schweipert ◽  
Niklas Jänsch ◽  
Neha Upadhyay ◽  
Kalpana Tilekar ◽  
Ewelina Wozny ◽  
...  

Recently, we have reported that non-hydroxamate thiazolidinedione (TZD) analogs are capable of inhibiting human deacetylase 4 (HDAC4). This study aims at the dissection of the molecular determinants and kinetics of the molecular recognition of TZD ligands by HDAC4. For this purpose, a structure activity relationship analysis of 225 analogs was combined with a comprehensive study of the enzyme and binding kinetics of a variety of HDAC4 mutant variants. The experimental data were rationalized by docking to the two major conformations of HDAC4. TZD ligands are competitive inhibitors and bind via a two-step mechanism involving principal molecular recognition and induced fit. The residence time of 24 g is (34 ± 3) min and thus much larger than that of the canonical pan-HDAC inhibitor SAHA ((5 ± 2) min). Importantly, the binding kinetics can be tuned by varying the structure of the CAP group.


Author(s):  
Lin Zhou ◽  
Siqi Zheng ◽  
Fernando R Rosas Bringas ◽  
Bjorn Bakker ◽  
Judith E Simon ◽  
...  

Abstract Maternal embryonic leucine zipper kinase (MELK) is frequently overexpressed in cancer, but the role of MELK in cancer is still poorly understood. MELK was shown to have roles in many cancer-associated processes including tumor growth, chemotherapy resistance, and tumor recurrence. To determine whether the frequent overexpression of MELK can be exploited in therapy, we performed a high-throughput screen using a library of Saccharomyces cerevisiae mutants to identify genes whose functions become essential when MELK is overexpressed. We identified two such genes: LAG2 and HDA3. LAG2 encodes an inhibitor of the Skp, Cullin, F-box containing (SCF) ubiquitin-ligase complex, while HDA3 encodes a subunit of the HDA1 histone deacetylase complex. We find that one of these synthetic lethal interactions is conserved in mammalian cells, as inhibition of a human homolog of HDA3 (Histone Deacetylase 4, HDAC4) is synthetically toxic in MELK overexpression cells. Altogether, our work identified a novel potential drug target for tumors that overexpress MELK.


Thyroid ◽  
2021 ◽  
Author(s):  
Supanuch Ekronarongchai ◽  
Tanapat Palaga ◽  
Preamjit Saonanon ◽  
Vannakorn Pruksakorn ◽  
Nattiya Hirankarn ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yinlong Zhao ◽  
Shukuan Ling ◽  
Guohui Zhong ◽  
Yuheng Li ◽  
Jianwei Li ◽  
...  

Different kinds of mechanical stimuli acting on the heart lead to different myocardial phenotypes. Physiological stress, such as exercise, leads to adaptive cardiac hypertrophy, which is characterized by a normal cardiac structure and improved cardiac function. Pathological stress, such as sustained cardiac pressure overload, causes maladaptive cardiac remodeling and, eventually, heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) is an important regulator of pathological cardiac remodeling. However, the role of CKIP-1 in physiological cardiac hypertrophy is unknown. We subjected wild-type (WT) mice to a swimming exercise program for 21 days, which caused an increase in myocardial CKIP-1 protein and mRNA expression. We then subjected CKIP-1 knockout (KO) mice and myocardial-specific CKIP-1-overexpressing mice to the 21-day swimming exercise program. Histological and echocardiography analyses revealed that CKIP-1 KO mice underwent pathological cardiac remodeling after swimming, whereas the CKIP-1-overexpressing mice had a similar cardiac phenotype to the WT controls. Histone deacetylase 4 (HDAC4) is a key molecule in the signaling cascade associated with pathological hypertrophy; the phosphorylation levels of HDAC4 were markedly higher in CKIP-1 KO mouse hearts after the swimming exercise program. The phosphorylation levels of HDAC4 did not change after swimming in the hearts of CKIP-1-overexpressing or WT mice. Our results indicate that swimming, a mechanical stress that leads to physiological hypertrophy, triggers pathological cardiac remodeling in CKIP-1 KO mice. CKIP-1 is necessary for physiological cardiac hypertrophy in vivo, and for modulating the phosphorylation level of HDAC4 after physiological stress. Genetically engineering CKIP-1 expression affected heart health in response to exercise.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lin Xiao ◽  
Dongping Gong ◽  
Loufeng Liang ◽  
Anwei Liang ◽  
Huaxin Liang ◽  
...  

Abstract Background Intervertebral disc degeneration (IDD) is a major cause of lower back pain. This study aimed at exploring the effects of histone deacetylase 4 (HDAC4) and its upstream and downstream signaling molecules on IDD development. Methods A murine IDD model was established by inducing a needle puncture injury to the vertebrate, whereupon we isolated and transfected of nucleus pulposus (NP) cells. Disc height index (DHI) of the mice was determined by X-ray tomography, while the pain experienced by the IDD mice was evaluated by mechanical and thermal sensitivity tests. Next, the interaction between GSK3β and HDAC4 as well as that between HDAC4 and KLF5 acetylation was assessed by co-immunoprecipitation, while the promoter region binding was assessed identified by chromatin immunoprecipitation. By staining methods with TUNEL, Safranin O fast green, and hematoxylin and eosin, the NP cell apoptosis, degradation of extracellular matrix, and morphology of intervertebral disc tissues were measured. Furthermore, mRNA and protein expressions of GSK3β, HDAC4, KLF5, and ASK1, as well as the extent of HDAC4 phosphorylation, were determined by RT-qPCR and Western blotting. Results GSK3β was identified to be downregulated in the intervertebral disc tissues obtained from IDD mice, while HDAC4, KLF5, and ASK1 were upregulated. HDAC4 silencing alleviated IDD symptoms. It was also found that GSK3β promoted the phosphorylation of HDAC4 to increase its degradation, while HDAC4 promoted ASK1 expression through upregulating the expression of KLF5. In IDD mice, GSK3β overexpression resulted in increased DHI, inhibition of NP cell apoptosis, alleviation of disc degeneration, and promoted mechanical and thermal pain thresholds. However, HDAC4 overexpression reversed these effects by promoting ASK1 expression. Conclusion Based on the key findings of the current study, we conclude that GSK3β can promote degradation of HDAC4, which lead to an overall downregulation of the downstream KLF5/ASK1 axis, thereby alleviating the development of IDD.


Sign in / Sign up

Export Citation Format

Share Document