scholarly journals Human Immunodeficiency Virus Viremia Induces Plasmacytoid Dendritic Cell Activation In Vivo and Diminished Alpha Interferon Production In Vitro

2008 ◽  
Vol 82 (8) ◽  
pp. 3997-4006 ◽  
Author(s):  
John C. Tilton ◽  
Maura M. Manion ◽  
Marlise R. Luskin ◽  
Alison J. Johnson ◽  
Andy A. Patamawenu ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection has been associated with perturbations of plasmacytoid dendritic cells (PDC), including diminished frequencies in the peripheral blood and reduced production of type I interferons (IFNs) in response to in vitro stimulation. However, recent data suggest a paradoxical increase in production of type 1 interferons in vivo in HIV-infected patients compared to uninfected controls. Using a flow cytometric assay to detect IFN-α-producing cells within unseparated peripheral blood mononuclear cells, we observed that short-term interruptions of antiretroviral therapy are sufficient to result in significantly reduced IFN-α production by PDC in vitro in response to CpG A ligands or inactivated HIV particles. The primary cause of diminished IFN-α production was reduced responsiveness of PDC to de novo stimulation, not diminished per cell IFN-α production or migration of cells to lymphoid organs. Real-time PCR analysis of purified PDC from patients prior to and during treatment interruptions revealed that active HIV-1 replication is associated with upregulation of type I IFN-stimulated gene expression. Treatment of hepatitis C virus-infected patients with IFN-α2b and ribavirin for hepatitis C virus infection resulted in a profound suppression of de novo IFN-α production in response to CpG A or inactivated HIV particles, similar to the response observed in HIV-infected patients. Together, these results suggest that diminished production of type I interferons in vitro by PDC from HIV-1-infected patients may not represent diminished interferon production in vivo. Rather, diminished function in vitro is likely a consequence of prior activation via type I interferons or HIV virions in vivo.

2001 ◽  
Vol 75 (8) ◽  
pp. 3916-3924 ◽  
Author(s):  
Karen M. Duus ◽  
Eric D. Miller ◽  
Jonathan A. Smith ◽  
Grigoriy I. Kovalev ◽  
Lishan Su

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is frequently attenuated after long-term culture in vitro. The attenuation process probably involves mutations of functions required for replication and pathogenicity in vivo. Analysis of attenuated HIV-1 for replication and pathogenicity in vivo will help to define these functions. In this study, we examined the pathogenicity of an attenuated HIV-1 isolate in a laboratory worker accidentally exposed to a laboratory-adapted HIV-1 isolate. Using heterochimeric SCID-hu Thy/Liv mice as an in vivo model, we previously defined HIV-1 env determinants (HXB/LW) that reverted to replicate in vivo (L. Su, H. Kaneshima, M. L. Bonyhadi, R. Lee, J. Auten, A. Wolf, B. Du, L. Rabin, B. H. Hahn, E. Terwilliger, and J. M. McCune, Virology 227:46–52, 1997). Here we further demonstrate that HIV-1 replication in vivo can be separated from its pathogenic activity, in that the HXB/LW virus replicated to high levels in SCID-hu Thy/Liv mice, with no significant thymocyte depletion. Restoration of the nef gene in the recombinant HXB/LW genome restored its pathogenic activity, with no significant effect on HIV-1 replication in the thymus. Our results suggest that in vitro-attenuated HIV-1 lacks determinants for pathogenicity as well as for replication in vivo. Our data indicate that (i) the replication defect can be recovered in vivo by mutations in the envgene, without an associated pathogenic phenotype, and (ii)nef can function in the HXB/LW clone as a pathogenic factor that does not enhance HIV-1 replication in the thymus. Furthermore, the HXB/LW virus may be used to study mechanisms of HIV-1nef-mediated pathogenesis in vivo.


2000 ◽  
Vol 74 (17) ◽  
pp. 7699-7707 ◽  
Author(s):  
Tim Beaumont ◽  
Silvia Broersen ◽  
Ad van Nuenen ◽  
Han G. Huisman ◽  
Ana-Maria de Roda Husman ◽  
...  

ABSTRACT Development of disease is extremely rare in chimpanzees when inoculated with either T-cell-line-adapted neutralization-sensitive or primary human immunodeficiency virus type 1 (HIV-1), at first excluding a role for HIV-1 neutralization sensitivity in the clinical course of infection. Interestingly, we observed that short-term in vivo and in vitro passage of primary HIV-1 isolates through chimpanzee peripheral blood mononuclear cells (PBMC) resulted in a neutralization-sensitive phenotype. Furthermore, an HIV-1 variant reisolated from a chimpanzee 10 years after experimental infection was still sensitive to neutralization by soluble CD4, the CD4 binding site recognizing antibody IgG1b12 and autologous chimpanzee serum samples, but had become relatively resistant to neutralization by polyclonal human sera and neutralizing monoclonal antibodies. The initial adaptation of HIV-1 to replicate in chimpanzee PBMC seemed to coincide with a selection for viruses with low replicative kinetics. Neither coreceptor usage nor the expression level of CD4, CCR5, or CXCR4 on chimpanzee PBMC compared to human cells could explain the phenotypic changes observed in these chimpanzee-passaged viruses. Our data suggest that the increased neutralization sensitivity of HIV-1 after replication in chimpanzee cells may in part contribute to the long-term asymptomatic HIV-1 infection in experimentally infected chimpanzees.


2005 ◽  
Vol 79 (21) ◽  
pp. 13579-13586 ◽  
Author(s):  
W. David Wick ◽  
Otto O. Yang ◽  
Lawrence Corey ◽  
Steven G. Self

ABSTRACT The antiviral role of CD8+ cytotoxic T lymphocytes (CTLs) in human immunodeficiency virus type 1 (HIV-1) infection is poorly understood. Specifically, the degree to which CTLs reduce viral replication by killing HIV-1-infected cells in vivo is not known. Here we employ mathematical models of the infection process and CTL action to estimate the rate that CTLs can kill HIV-1-infected cells from in vitro and in vivo data. Our estimates, which are surprisingly consistent considering the disparities between the two experimental systems, demonstrate that on average CTLs can kill from 0.7 to 3 infected target cells per day, with the variability in this figure due to epitope specificity or other factors. These results are compatible with the observed decline in viremia after primary infection being primarily a consequence of CTL activity and have interesting implications for vaccine design.


2005 ◽  
Vol 79 (3) ◽  
pp. 1470-1479 ◽  
Author(s):  
Isabel Scholz ◽  
Brian Arvidson ◽  
Doug Huseby ◽  
Eric Barklis

ABSTRACT The N-terminal domains (NTDs) of the human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein have been modeled to form hexamer rings in the mature cores of virions. In vitro, hexamer ring units organize into either tubes or spheres, in a pH-dependent fashion. To probe factors which might govern hexamer assembly preferences in vivo, we examined the effects of mutations at CA histidine residue 84 (H84), modeled at the outer edges of NTD hexamers, as well as a nearby histidine (H87) in the cyclophilin A (CypA) binding loop. Although mutations at H87 yielded infectious virions, mutations at H84 produced assembly-competent but poorly infectious virions. The H84 mutant viruses incorporated wild-type levels of CypA and viral RNAs and showed nearly normal signals in virus entry assays. However, mutant CA proteins assembled aberrant virus cores, and mutant core fractions retained abnormally high levels of CA but reduced reverse transcriptase activities. Our results suggest that HIV-1 CA residue 84 contributes to a structure which helps control either NTD hexamer assembly or the organization of hexamers into higher-order structures.


2013 ◽  
Vol 94 (6) ◽  
pp. 1318-1324 ◽  
Author(s):  
Akatsuki Saito ◽  
Masako Nomaguchi ◽  
Ken Kono ◽  
Yasumasa Iwatani ◽  
Masaru Yokoyama ◽  
...  

TRIM5α restricts human immunodeficiency virus type 1 (HIV-1) infection in cynomolgus monkey (CM) cells. We previously reported that a TRIMCyp allele expressing TRIM5–cyclophilin A fusion protein was frequently found in CMs. Here, we examined the influence of TRIM5 gene variation on the susceptibility of CMs to a monkey-tropic HIV-1 derivative (HIV-1mt) and found that TRIMCyp homozygotes were highly susceptible to HIV-1mt not only in vitro but also in vivo. These results provide important insights into the inter-individual differences in susceptibility of macaques to HIV-1mt.


2000 ◽  
Vol 74 (1) ◽  
pp. 184-192 ◽  
Author(s):  
Birgit Schramm ◽  
Michael L. Penn ◽  
Roberto F. Speck ◽  
Stephen Y. Chan ◽  
Erik De Clercq ◽  
...  

ABSTRACT The chemokine receptors CCR5 and CXCR4 function as the principal coreceptors for human immunodeficiency virus type 1 (HIV-1). Coreceptor function has also been demonstrated for a variety of related receptors in vitro. The relative contributions of CCR5, CXCR4, and other putative coreceptors to HIV-1 disease in vivo have yet to be defined. In this study, we used sequential primary isolates and recombinant strains of HIV-1 to demonstrate that CXCR4-using (X4) viruses emerging in association with disease progression are highly pathogenic in ex vivo lymphoid tissues compared to CXCR4-independent viruses. Furthermore, synthetic receptor antagonists that specifically block CXCR4-mediated entry dramatically suppressed the depletion of CD4+ T cells by recombinant and clinically derived X4 HIV-1 isolates. Moreover, in vitro specificity for the additional coreceptors CCR3, CCR8, BOB, and Bonzo did not augment cytopathicity or diminish sensitivity toward CXCR4 antagonists in lymphoid tissues. These data provide strong evidence to support the concept that adaptation to CXCR4 specificity in vivo accelerates HIV-1 disease progression. Thus, therapeutic intervention targeting the interaction of HIV-1 gp120 with CXCR4 may be highly valuable for suppressing the pathogenic effects of late-stage viruses.


2004 ◽  
Vol 78 (9) ◽  
pp. 4628-4637 ◽  
Author(s):  
Jing Lu ◽  
Prakash Sista ◽  
Françoise Giguel ◽  
Michael Greenberg ◽  
Daniel R. Kuritzkes

ABSTRACT Resistance to enfuvirtide (ENF; T-20), a fusion inhibitor of human immunodeficiency virus type 1 (HIV-1), is conferred by mutations in the first heptad repeat of the gp41 ectodomain. The replicative fitness of recombinant viruses carrying ENF resistance mutations was studied in growth competition assays. ENF resistance mutations, selected in vitro or in vivo, were introduced into the env gene of HIV-1NL4-3 by site-directed mutagenesis and expressed in HIV-1 recombinants carrying sequence tags in nef. The doubling time of ENF-resistant viruses was highly correlated with decreasing ENF susceptibility (R 2 = 0.859; P < 0.001). Initial fitness experiments focused on mutants identified by in vitro selection in the presence of ENF (L. T. Rimsky, D. C. Shugars, and T. J. Matthews, J. Virol. 72:986-993, 1998). In the absence of drug, these mutants displayed reduced fitness compared to wild-type virus with a relative order of fitness of wild type > I37T > V38 M > D36S/V38 M; this order was reversed in the presence of ENF. Likewise, recombinant viruses carrying ENF resistance mutations selected in vivo displayed reduced fitness in the absence of ENF with a relative order of wild type > N42T > V38A > N42T/N43K ≈ N42T/N43S > V38A/N42D ≈ V38A/N42T. Fitness and ENF susceptibility were inversely correlated (r = −0.988; P < 0.001). Similar results were obtained with recombinants expressing molecularly cloned full-length env genes obtained from patient-derived HIV-1 isolates before and after ENF treatment. Further studies are needed to determine whether the reduced fitness of ENF-resistant viruses alters their pathogenicity in vivo.


Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2302-2311 ◽  
Author(s):  
V Giordanengo ◽  
M Limouse ◽  
L Desroys du Roure ◽  
J Cottalorda ◽  
A Doglio ◽  
...  

Autoantibodies to lymphocytes have been detected in sera from human immunodeficiency virus type 1 (HIV-1)-infected individuals, and several autoantigens have been described. Among them, hyposialylated CD43 has been shown to be a target for autoantibodies in up to 47% of HIV+ individuals. However, the corresponding autoantigen (ie, the incompletely sialylated CD43) has not been isolated from blood cells of HIV-1-infected individuals. Recently, we have observed in vitro that HIV-1 productively or latently infected CEM cells (CEMLAI/NP) express CD43 molecules with modified glycosylation (mogly CD43). Using CEMLAI/NP cells, which do not express any structural viral antigen, we show now that all of the tested HIV+ sera from asymptomatic individuals, and up to 86% of those from subjects at the acquired immunodeficiency syndrome stage contain antibodies (mainly IgM and, to a lesser degree, IgG) that recognize the surface of CEMLAI/NP cells, and precipitate mogly CD43 molecules from the cells lysates. Taken together with our previous demonstration of altered glycosylation of CD43 from HIV-1-infected CEM cells in vitro, the constant antimogly CD43 autoimmune response observed from asymptomatic HIV-1+ subjects is likely to illustrate the occurrence of an altered glycosylation in vivo of the major lymphocyte surface CD43 glycoprotein, associated with HIV- 1 infection.


2001 ◽  
Vol 75 (23) ◽  
pp. 11344-11353 ◽  
Author(s):  
Vincent Parissi ◽  
Christina Calmels ◽  
Vaea Richard De Soultrait ◽  
Anne Caumont ◽  
Michel Fournier ◽  
...  

ABSTRACT Integration of human immunodeficiency virus type 1 (HIV-1) proviral DNA in the nuclear genome is catalyzed by the retroviral integrase (IN). In addition to IN, viral and cellular proteins associated in the high-molecular-weight preintegration complex have been suggested to be involved in this process. In an attempt to define host factors interacting with IN, we used an in vitro system to identify cellular proteins in interaction with HIV-1 IN. The yeast Saccharomyces cerevisiae was chosen since (i) its complete sequence has been established and the primary structure of all the putative proteins from this eucaryote has been deduced, (ii) there is a significant degree of homology between human and yeast proteins, and (iii) we have previously shown that the expression of HIV-1 IN in yeast induces a lethal phenotype. Strong evidences suggest that this lethality is linked to IN activity in infected human cells where integration requires the cleavage of genomic DNA. Using IN-affinity chromatography we identified four yeast proteins interacting with HIV-1 IN, including the yeast chaperonin yHSP60, which is the counterpart of human hHSP60. Yeast lethality induced by HIV-1 IN was abolished when a mutated HSP60 was coexpressed, therefore suggesting that both proteins interact in vivo. Besides interacting with HIV-1 IN, the hHSP60 was able to stimulate the in vitro processing and joining activities of IN and protected this enzyme from thermal denaturation. In addition, the functional human HSP60-HSP10 complex in the presence of ATP was able to recognize the HIV-1 IN as a substrate.


Sign in / Sign up

Export Citation Format

Share Document