scholarly journals Paramyxovirus-Induced Shutoff of Host and Viral Protein Synthesis: Role of the P and V Proteins in Limiting PKR Activation

2007 ◽  
Vol 82 (2) ◽  
pp. 828-839 ◽  
Author(s):  
Maria D. Gainey ◽  
Patrick J. Dillon ◽  
Kimberly M. Clark ◽  
Mary J. Manuse ◽  
Griffith D. Parks

ABSTRACT The paramyxovirus simian virus 5 (SV5) establishes highly productive persistent infections of epithelial cells without inducing a global inhibition of translation. Here we show that an SV5 mutant (the P/V-CPI− mutant) with substitutions in the P subunit of the viral polymerase and the accessory V protein also establishes highly productive infections like wild-type (WT) SV5 but that cells infected with the P/V-CPI− mutant show an overall shutdown of both host and viral translation at late times postinfection. Reduced host and viral protein synthesis with the P/V-CPI− virus was not due to lower levels of mRNA or caspase-dependent apoptosis and correlated with phosphorylation of the translation initiation factor eIF-2α. WT SV5 was a poor activator of the eIF-2α kinase protein kinase R (PKR). By contrast, the P/V-CPI− mutant induced PKR phosphorylation, which correlated with the time course of translation inhibition but was independent of interferon signaling. In HeLa cells that expressed the PKR inhibitor influenza A virus NS1 or reovirus sigma3, the rate of host protein synthesis at late times after infection with the P/V-CPI− mutant was restored to ∼50% that of control HeLa cells. By contrast, the rates of P/V-CPI− viral protein synthesis in HeLa cells expressing NS1 or sigma3 were dramatically enhanced, between 5- and 20-fold, while levels of viral mRNA were increased only slightly (NS1-expressing cells) or remained constant (sigma3-expressing cells). Similar results were found using HeLa cells where PKR levels were reduced due to knockdown by small interfering RNA. Expression of either the WT P or the WT V protein from the genome of the P/V-CPI− mutant resulted in lower levels of PKR activation and rates of host and viral protein synthesis that closely matched those seen with WT SV5. Despite higher rates of translation, cells infected with the V- or P-complemented virus accumulated viral mRNAs to lower levels than that seen with the parental P/V-CPI− mutant. We present a model in which the paramyxovirus P/V gene products limit induction of PKR by limiting the synthesis of aberrant viral mRNAs and double-stranded RNA and thus prevent the shutdown of translation by a mechanism that differs from that of other PKR inhibitors such as NS1 and sigma3.

2017 ◽  
Author(s):  
Patrick D. Slaine ◽  
Mariel Kleer ◽  
Nathan Smith ◽  
Denys A. Khaperskyy ◽  
Craig McCormick

ABSTRACTEukaryotic translation initiation factor 4A (eIF4A) is a helicase that facilitates assembly of the translation preinitiation complex by unwinding structured mRNA 5’ untranslated regions. Pateamine A (PatA) and silvestrol are natural products that disrupt eIF4A function and arrest translation, thereby triggering the formation of cytoplasmic aggregates of stalled preinitiation complexes known as stress granules (SGs). Here we examined the effects of eIF4A inhibition by PatA and silvestrol on influenza A virus (IAV) protein synthesis and replication in cell culture. Treatment of infected cells with either PatA or silvestrol at early times post-infection results in SG formation, arrest of viral protein synthesis and failure to replicate the viral genome. PatA, which irreversibly binds to eIF4A, sustained long-term blockade of IAV replication following drug withdrawal, and inhibited IAV replication at concentrations that had minimal cytotoxicity. By contrast, the antiviral effects of silvestrol were fully reversible; drug withdrawal caused rapid SG dissolution and resumption of viral protein synthesis. IAV inhibition by silvestrol was invariably associated with cytotoxicity. PatA blocked replication of genetically divergent IAV strains, suggesting common dependence on host eIF4A activity. This study demonstrates the feasibility of targeting core host protein synthesis machinery to prevent viral replication.IMPORTANCEInfluenza A virus (IAV) relies on cellular protein synthesis to decode viral messenger RNAs. Pateamine A and silvestrol are natural products that inactivate an essential protein synthesis protein known as eIF4A. Here we show that IAV is sensitive to these eIF4A inhibitor drugs. Treatment of infected cells with pateamine A or silvestrol prevented synthesis of viral proteins, viral genome replication and release of infectious virions. The irreversible eIF4A inhibitor pateamine A sustained long-term blockade of viral replication, whereas viral protein synthesis quickly resumed after silvestrol was removed from infected cells. Prolonged incubation of either infected or uninfected cells with these drugs induced the programmed cell death cascade called apoptosis. Our findings suggest that core components of the host protein synthesis machinery are viable targets for antiviral drug discovery. The most promising drug candidates should selectively block protein synthesis in infected cells without perturbing bystander uninfected cells.


2009 ◽  
Vol 84 (2) ◽  
pp. 1124-1138 ◽  
Author(s):  
Julianne L. Garrey ◽  
Yun-Young Lee ◽  
Hilda H. T. Au ◽  
Martin Bushell ◽  
Eric Jan

ABSTRACT The dicistrovirus is a positive-strand single-stranded RNA virus that possesses two internal ribosome entry sites (IRES) that direct translation of distinct open reading frames encoding the viral structural and nonstructural proteins. Through an unusual mechanism, the intergenic region (IGR) IRES responsible for viral structural protein expression mimics a tRNA to directly recruit the ribosome and set the ribosome into translational elongation. In this study, we explored the mechanism of host translational shutoff in Drosophila S2 cells infected by the dicistrovirus, cricket paralysis virus (CrPV). CrPV infection of S2 cells results in host translational shutoff concomitant with an increase in viral protein synthesis. CrPV infection resulted in the dissociation of eukaryotic translation initiation factor 4G (eIF4G) and eIF4E early in infection and the induction of deIF2α phosphorylation at 3 h postinfection, which lags after the initial inhibition of host translation. Forced dephosphorylation of deIF2α by overexpression of dGADD34, which activates protein phosphatase I, did not prevent translational shutoff nor alter virus production, demonstrating that deIF2α phosphorylation is dispensable for host translational shutoff. However, premature induction of deIF2α phosphorylation by thapsigargin treatment early in infection reduced viral protein synthesis and replication. Finally, translation mediated by the 5′ untranslated region (5′UTR) and the IGR IRES were resistant to impairment of eIF4F or eIF2 in translation extracts. These results support a model by which the alteration of the deIF4F complex contribute to the shutoff of host translation during CrPV infection, thereby promoting viral protein synthesis via the CrPV 5′UTR and IGR IRES.


2006 ◽  
Vol 80 (18) ◽  
pp. 9031-9038 ◽  
Author(s):  
Hilda Montero ◽  
Carlos F. Arias ◽  
Susana Lopez

ABSTRACT Initiation is the rate-limiting step in protein synthesis and therefore an important target for regulation. For the initiation of translation of most cellular mRNAs, the cap structure at the 5′ end is bound by the translation factor eukaryotic initiation factor 4E (eIF4E), while the poly(A) tail, at the 3′ end, is recognized by the poly(A)-binding protein (PABP). eIF4G is a scaffold protein that brings together eIF4E and PABP, causing the circularization of the mRNA that is thought to be important for an efficient initiation of translation. Early in infection, rotaviruses take over the host translation machinery, causing a severe shutoff of cell protein synthesis. Rotavirus mRNAs lack a poly(A) tail but have instead a consensus sequence at their 3′ ends that is bound by the viral nonstructural protein NSP3, which also interacts with eIF4GI, using the same region employed by PABP. It is widely believed that these interactions lead to the translation of rotaviral mRNAs, impairing at the same time the translation of cellular mRNAs. In this work, the expression of NSP3 in infected cells was knocked down using RNA interference. Unexpectedly, under these conditions the synthesis of viral proteins was not decreased, while the cellular protein synthesis was restored. Also, the yield of viral progeny increased, which correlated with an increased synthesis of viral RNA. Silencing the expression of eIF4GI further confirmed that the interaction between eIF4GI and NSP3 is not required for viral protein synthesis. These results indicate that NSP3 is neither required for the translation of viral mRNAs nor essential for virus replication in cell culture.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 499 ◽  
Author(s):  
Shelby Powell Kesterson ◽  
Jeffery Ringiesn ◽  
Vikram N. Vakharia ◽  
Brian S. Shepherd ◽  
Douglas W. Leaman ◽  
...  

Viral hemorrhagic septicemia virus (VHSV) is one of the most deadly infectious fish pathogens, posing a serious threat to the aquaculture industry and freshwater ecosystems worldwide. Previous work showed that VHSV sub-genotype IVb suppresses host innate immune responses, but the exact mechanism by which VHSV IVb inhibits antiviral response remains incompletely characterized. As with other novirhabdoviruses, VHSV IVb contains a unique and highly variable nonvirion (NV) gene, which is implicated in viral replication, virus-induced apoptosis and regulating interferon (IFN) production. However, the molecular mechanisms underlying the role of IVb NV gene in regulating viral or cellular processes is poorly understood. Compared to the wild-type recombinant (rWT) VHSV, mutant VHSV lacking a functional IVb NV reduced IFN expression and compromised innate immune response of the host cells by inhibiting translation. VHSV IVb infection increased phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in host translation shutoff. However, VHSV IVb protein synthesis proceeds despite increasing phosphorylation of eIF2α. During VHSV IVb infection, eIF2α phosphorylation was mediated via PKR-like endoplasmic reticulum kinase (PERK) and was required for efficient viral protein synthesis, but shutoff of host translation and IFN signaling was independent of p-eIF2α. Similarly, IVb NV null VHSV infection induced less p-eIF2α, but exhibited decreased viral protein synthesis despite increased levels of viral mRNA. These findings show a role for IVb NV in VHSV pathogenesis by utilizing the PERK-eIF2α pathway for viral-mediated host shutoff and interferon signaling to regulate host cell response.


2004 ◽  
Vol 78 (17) ◽  
pp. 8960-8970 ◽  
Author(s):  
John H. Connor ◽  
Christine Naczki ◽  
Costas Koumenis ◽  
Douglas S. Lyles

ABSTRACT Tumor hypoxia presents an obstacle to the effectiveness of most antitumor therapies, including treatment with oncolytic viruses. In particular, an oncolytic virus must be resistant to the inhibition of DNA, RNA, and protein synthesis that occurs during hypoxic stress. Here we show that vesicular stomatitis virus (VSV), an oncolytic RNA virus, is capable of replication under hypoxic conditions. In cells undergoing hypoxic stress, VSV infection produced larger amounts of mRNA than under normoxic conditions. However, translation of these mRNAs was reduced at earlier times postinfection in hypoxia-adapted cells than in normoxic cells. At later times postinfection, VSV overcame a hypoxia-associated increase in α subunit of eukaryotic initiation factor 2 (eIF-2α) phosphorylation and initial suppression of viral protein synthesis in hypoxic cells to produce large amounts of viral protein. VSV infection caused the dephosphorylation of the translation initiation factor eIF-4E and inhibited host translation similarly under both normoxic and hypoxic conditions. VSV produced progeny virus to similar levels in hypoxic and normoxic cells and showed the ability to expand from an initial infection of 1% of hypoxic cells to spread through an entire population. In all cases, virus infection induced classical cytopathic effects and apoptotic cell death. When VSV was used to treat tumors established in nude mice, we found VSV replication in hypoxic areas of these tumors. This occurred whether the virus was administered intratumorally or intravenously. These results show for the first time that VSV has an inherent capacity for infecting and killing hypoxic cancer cells. This ability could represent a critical advantage over existing therapies in treating established tumors.


2018 ◽  
Author(s):  
Eric S. Pringle ◽  
Carolyn-Ann Robinson ◽  
Nicolas Crapoulet ◽  
Andrea L-A. Monjo ◽  
Katrina Bouzanis ◽  
...  

ABSTRACTHerpesvirus genomes are decoded by host RNA polymerase II, generating messenger ribonucleic acids (mRNAs) that are post-transcriptionally modified and exported to the cytoplasm. These viral mRNAs have 5 ′ -m7GTP caps and poly(A) tails that should permit assembly of canonical eIF4F cap-binding complexes to initiate protein synthesis. However, we have shown that chemical disruption of eIF4F does not impede KSHV lytic replication, suggesting that alternative translation initiation mechanisms support viral protein synthesis. Here, using polysome profiling analysis, we confirmed that eIF4F disassembly did not affect the efficient translation of viral mRNAs during lytic replication, whereas a large fraction of host mRNAs remained eIF4F-dependent. Lytic replication altered multiple host translation initiation factors (TIFs), causing caspase-dependent cleavage of eIF2α and eIF4G1 and decreasing levels of eIF4G2 and eIF4G3. Non-eIF4F TIFs NCBP1, eIF4E2 and eIF4G2 associated with actively translating messenger ribonucleoprotein (mRNP) complexes during KSHV lytic replication, but their depletion by RNA silencing did not affect virion production, suggesting that the virus does not exclusively rely on one of these alternative TIFs for efficient viral protein synthesis. METTL3, an N6-methyladenosine (m6A) methyltransferase that modifies mRNAs and influences translational efficiency, was dispensable for early viral gene expression and genome replication but required for late gene expression and virion production. METTL3 was also subject to caspase-dependent degradation during lytic replication, suggesting that its positive effect on KSHV late gene expression may be indirect. Taken together, our findings reveal extensive remodelling of TIFs during lytic replication, which may help sustain efficient viral protein synthesis in the context of host shutoff.IMPORTANCEViruses use host cell protein synthesis machinery to create viral proteins. Herpesviruses have evolved a variety of ways to gain control over this host machinery to ensure priority synthesis of viral proteins and diminished synthesis of host proteins with antiviral properties. We have shown that a herpesvirus called KSHV disrupts normal cellular control of protein synthesis. A host cell protein complex called eIF4F starts translation of most cellular mRNAs, but we observed it is dispensable for efficient synthesis of viral proteins. Several proteins involved in alternative modes of translation initiation were likewise dispensable. However, an enzyme called METTL3 that modifies mRNAs is required for efficient synthesis of certain late KSHV proteins and productive infection. We observed caspase-dependent degradation of several host cell translation initiation proteins during infection, suggesting that the virus alters pools of available factors to favour efficient viral protein synthesis at the expense of host protein synthesis.


2018 ◽  
Author(s):  
Izabela Wojtal ◽  
Malgorzata Podsiadla-Bialoskorska ◽  
Renata Grzela ◽  
Malgorzata Bujak ◽  
Ewa Szolajska ◽  
...  

AbstractViruses of the Potyviridae family have VPg protein covalently attached to the 5’ end of their linear RNA genome. The protein interacts with the host translation initiation factor eIF4E that occurs in plant cells in two isoforms, one being the preferable target of a given VPg, the remaining one still acting in host protein synthesis. In animal cells only one form of eIF4E is directly involved in protein synthesis. The human eIF4E is known to be an oncogene; elevated expression of eIF4E leads to oncogenic transformation, cancers in animal models and poor prognosis in human cancers, while reduction of the eIF4E level can reverse the transformed phenotype. We show that VPg protein delivery to cells containing only one eIF4E isoform involved in protein synthesis resulted in immobilization of eIF4E in the cytoplasm. The region of VPg involved in the interaction with eIF4E has been partially identified. Peptides derived from this region interacted better with eIF4E than complete VPg protein. Here we characterized one of VPg peptides, VPg5 and we show that VPg5 delivered to colon carcinoma HCT116 cells is able to inhibit cell growth, which is accompanied by reduction in eIF4E level.List of abbreviationsAcMNPVAutographa californica multicapsid nucleopolyhedrovirusCBBCoomassie Brilliant BlueClYVVClover yellow vein viruseIF4Eeukaryotic initiation translation factor 4E4EBP, eIF4E binding proteinFCSfetal calf serumLMVLettuce Mosaic VirusMOImultiplicity of infectionMWmolecular weightONovernightTMB3,3,5,5-tetramethylbenzidineT. niTrichoplusia ni cellsPBSTPBS buffer containing 0.05% Tween-20pipost infectionPIpropidium iodideTEVtobacco etch virusTVMVtobacco vein mottling virusPVYpotato virus YVPggenome-linked viral protein


Sign in / Sign up

Export Citation Format

Share Document