scholarly journals Efficient In Vitro Expansion of Human Immunodeficiency Virus (HIV)-Specific T-Cell Responses by gag mRNA-Electroporated Dendritic Cells from Treated and Untreated HIV Type 1-Infected Individuals

2008 ◽  
Vol 82 (7) ◽  
pp. 3561-3573 ◽  
Author(s):  
Ellen R. Van Gulck ◽  
Guido Vanham ◽  
Leo Heyndrickx ◽  
Sandra Coppens ◽  
Katleen Vereecken ◽  
...  

ABSTRACT Developing an immunotherapy to keep human immunodeficiency virus type 1 (HIV-1) replication suppressed while discontinuing highly active antiretroviral therapy (HAART) is an important challenge. In the present work, we evaluated in vitro whether dendritic cells (DC) electroporated with gag mRNA can induce HIV-specific responses in T cells from chronically infected subjects. Monocyte-derived DC, from therapy-naïve and HAART-treated HIV-1-seropositive subjects, that were electroporated with consensus codon-optimized HxB2 gag mRNA efficiently expanded T cells, secreting gamma interferon (IFN-γ) and interleukin 2 (IL-2), as well as other cytokines and perforin, upon restimulation with a pool of overlapping Gag peptides. The functional expansion levels after 1 week of stimulation were comparable in T cells from HAART-treated and treatment-naïve patients and involved both CD4+ and CD8+ T cells, with evidence of bifunctionality in T cells. Epitope mapping of p24 showed that stimulated T cells had a broadened response toward previously nondescribed epitopes. DC, from HAART-treated subjects, that were electroporated with autologous proviral gag mRNA equally efficiently expanded HIV-specific T cells. Regulatory T cells did not prevent the induction of effector T cells in this system, whereas the blocking of PD-L1 slightly increased the induction of T-cell responses. This paper shows that DC, loaded with consensus or autologous gag mRNA, expand HIV-specific T-cell responses in vitro.

2002 ◽  
Vol 76 (6) ◽  
pp. 3007-3014 ◽  
Author(s):  
Xiao-Qing Zhao ◽  
Xiao-Li Huang ◽  
Phalguni Gupta ◽  
Luann Borowski ◽  
Zheng Fan ◽  
...  

ABSTRACT T-cell responses to X4 strains of human immunodeficiency virus type 1 (HIV-1) are considered important in controlling progression of HIV-1 infection. We investigated the ability of dendritic cells (DC) and various forms of HIV-1 X4 antigen to induce anti-HIV-1 T-cell responses in autologous peripheral blood mononuclear cells from HIV-1-infected persons. Immature DC loaded with HIV-1 IIIB-infected, autologous, apoptotic CD8− cells and matured with CD40 ligand induced gamma interferon production in autologous CD8+ and CD4+ T cells. In contrast, mature DC loaded with HIV-1 IIIB-infected, necrotic cells or directly infected with cell-free HIV-1 IIIB were poorly immunogenic. Thus, HIV-1-infected cells undergoing apoptosis serve as a rich source of X4 antigen for CD8+ and CD4+ T cells by DC. This may be an important mechanism of HIV-1 immunogenicity and provides a strategy for immunotherapy of HIV-1-infected patients on combination antiretroviral therapy.


2000 ◽  
Vol 74 (4) ◽  
pp. 1694-1703 ◽  
Author(s):  
Hanne Gahéry-Ségard ◽  
Gilles Pialoux ◽  
Bénédicte Charmeteau ◽  
Sandrine Sermet ◽  
Hubert Poncelet ◽  
...  

ABSTRACT We have attempted to develop an anti-human immunodeficiency virus (HIV) lipopeptide vaccine with several HIV-specific long peptides modified by C-terminal addition of a single palmitoyl chain. A mixture of six lipopeptides derived from regulatory or structural HIV-1 proteins (Nef, Gag, and Env) was prepared. A phase I study was conducted to evaluate immunogenicity and tolerance in lipopeptide vaccination of HIV-1-seronegative volunteers given three injections of either 100, 250, or 500 μg of each lipopeptide, with or without immunoadjuvant (QS21). This report analyzes in detail B- and T-cell responses induced by vaccination. The lipopeptide vaccine elicited strong and multiepitopic B- and T-cell responses. Vaccinated subjects produced specific immunoglobulin G antibodies that recognized the Nef and Gag proteins. After the third injection, helper CD4+-T-cell responses as well as specific cytotoxic CD8+ T cells were also obtained. These CD8+ T cells were able to recognize naturally processed viral proteins. Finally, specific gamma interferon-secreting CD8+ T cells were also detected ex vivo.


2009 ◽  
Vol 83 (17) ◽  
pp. 8722-8732 ◽  
Author(s):  
R. Brad Jones ◽  
Feng-Yun Yue ◽  
Xiao Xiao Jenny Gu ◽  
Diana V. Hunter ◽  
Shariq Mujib ◽  
...  

ABSTRACT The presence of interleukin-2 (IL-2)-producing human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T-cell responses has been associated with the immunological control of HIV-1 replication; however, the causal relationship between these factors remains unclear. Here we show that IL-2-producing HIV-1-specific CD4+ T cells can be cloned from acutely HIV-1-infected individuals. Despite the early presence of these cells, each of the individuals in the present study exhibited progressive disease, with one individual showing rapid progression. In this rapid progressor, three IL-2-producing HIV-1 Gag-specific CD4+ T-cell responses were identified and mapped to the following optimal epitopes: HIVWASRELER, REPRGSDIAGT, and FRDYVDRFYKT. Responses to these epitopes in peripheral blood mononuclear cells were monitored longitudinally to >1 year postinfection, and contemporaneous circulating plasma viruses were sequenced. A variant of the FRDYVDRFYKT epitope sequence, FRDYVDQFYKT, was observed in 1/21 plasma viruses sequenced at 5 months postinfection and 1/10 viruses at 7 months postinfection. This variant failed to stimulate the corresponding CD4+ T-cell clone and thus constitutes an escape mutant. Responses to each of the three Gag epitopes were rapidly lost, and this loss was accompanied by a loss of antigen-specific cells in the periphery as measured by using an FRDYVDRFYKT-presenting major histocompatibility complex class II tetramer. Highly active antiretroviral therapy was associated with the reemergence of FRDYVDRFYKT-specific cells by tetramer. Thus, our data support that IL-2-producing HIV-1-specific CD4+ T-cell responses can exert immune pressure during early HIV-1 infection but that the inability of these responses to enforce enduring control of viral replication is related to the deletion and/or dysfunction of HIV-1-specific CD4+ T cells rather than to the fixation of escape mutations at high frequencies.


2009 ◽  
Vol 83 (12) ◽  
pp. 6288-6299 ◽  
Author(s):  
Bonnie A. Colleton ◽  
Xiao-Li Huang ◽  
Nada M. Melhem ◽  
Zheng Fan ◽  
Luann Borowski ◽  
...  

ABSTRACT Induction of an antigenically broad and vigorous primary T-cell immune response by myeloid dendritic cells (DC) in blood and tissues could be important for an effective prophylactic or therapeutic vaccine to human immunodeficiency virus type 1 (HIV-1). Here we show that a primary CD8+ T-cell response can be induced by HIV-1 peptide-loaded DC derived from blood monocytes of HIV-1-negative adults and neonates (moDC) and by Langerhans cells (LC) and interstitial, dermal-intestinal DC (idDC) derived from CD34+ stem cells of neonatal cord blood. Optimal priming of single-cell gamma interferon (IFN-γ) production by CD8+ T cells required CD4+ T cells and was broadly directed to multiple regions of Gag, Env, and Nef that corresponded to known and predicted major histocompatibility complex class I epitopes. Polyfunctional CD8+ T-cell responses, defined as single-cell production of more than one cytokine (IFN-γ, interleukin 2, or tumor necrosis factor alpha), chemokine (macrophage inhibitory factor 1β), or cytotoxic degranulation marker CD107a, were primed by moDC, LC, and idDC to HIV-1 Gag and reverse transcriptase epitopes, as well as to Epstein-Barr virus and influenza A virus epitopes. Thus, three major types of blood and tissue myeloid DC targeted by HIV-1, i.e., moDC, LC, and idDC, can prime multispecific, polyfunctional CD8+ T-cell responses to HIV-1 and other viral antigens.


1999 ◽  
Vol 73 (4) ◽  
pp. 3449-3454 ◽  
Author(s):  
Ines Frank ◽  
Laco Kacani ◽  
Heribert Stoiber ◽  
Hella Stössel ◽  
Martin Spruth ◽  
...  

ABSTRACT During the budding process, human immunodeficiency virus type 1 (HIV-1) acquires cell surface molecules; thus, the viral surface of HIV-1 reflects the antigenic pattern of the host cell. To determine the source of HIV-1 released from cocultures of dendritic cells (DC) with T cells, immature DC (imDC), mature DC (mDC), T cells, and their cocultures were infected with different HIV-1 isolates. The macrophage-tropic HIV-1 isolate Ba-L allowed viral replication in both imDC and mDC, whereas the T-cell-line-tropic primary isolate PI21 replicated in mDC only. By a virus capture assay, HIV-1 was shown to carry a T-cell- or DC-specific cell surface pattern after production by T cells or DC, respectively. Upon cocultivation of HIV-1-pulsed DC with T cells, HIV-1 exclusively displayed a typical T-cell pattern. Additionally, functional analysis revealed that HIV-1 released from imDC–T-cell cocultures was more infectious than HIV-1 derived from mDC–T-cell cocultures and from cultures of DC, T cells, or peripheral blood mononuclear cells alone. Therefore, we conclude that the interaction of HIV-1-pulsed imDC with T cells in vivo might generate highly infectious virus which primarily originates from T cells.


2004 ◽  
Vol 78 (7) ◽  
pp. 3233-3243 ◽  
Author(s):  
Agatha Masemola ◽  
Tumelo Mashishi ◽  
Greg Khoury ◽  
Phineas Mohube ◽  
Pauline Mokgotho ◽  
...  

ABSTRACT An understanding of the relationship between the breadth and magnitude of T-cell epitope responses and viral loads is important for the design of effective vaccines. For this study, we screened a cohort of 46 subtype C human immunodeficiency virus type 1 (HIV-1)-infected individuals for T-cell responses against a panel of peptides corresponding to the complete subtype C genome. We used a gamma interferon ELISPOT assay to explore the hypothesis that patterns of T-cell responses across the expressed HIV-1 genome correlate with viral control. The estimated median time from seroconversion to response for the cohort was 13 months, and the order of cumulative T-cell responses against HIV proteins was as follows: Nef > Gag > Pol > Env > Vif > Rev > Vpr > Tat > Vpu. Nef was the most intensely targeted protein, with 97.5% of the epitopes being clustered within 119 amino acids, constituting almost one-third of the responses across the expressed genome. The second most targeted region was p24, comprising 17% of the responses. There was no correlation between viral load and the breadth of responses, but there was a weak positive correlation (r = 0.297; P = 0.034) between viral load and the total magnitude of responses, implying that the magnitude of T-cell recognition did not contribute to viral control. When hierarchical patterns of recognition were correlated with the viral load, preferential targeting of Gag was significantly (r = 0.445; P = 0.0025) associated with viral control. These data suggest that preferential targeting of Gag epitopes, rather than the breadth or magnitude of the response across the genome, may be an important marker of immune efficacy. These data have significance for the design of vaccines and for interpretation of vaccine-induced responses.


2007 ◽  
Vol 81 (18) ◽  
pp. 10009-10016 ◽  
Author(s):  
Xin Wang ◽  
Tomofumi Uto ◽  
Takami Akagi ◽  
Mitsuru Akashi ◽  
Masanori Baba

ABSTRACT The mainstream of recent anti-AIDS vaccines is a prime/boost approach with multiple doses of the target DNA of human immunodeficiency virus type 1 (HIV-1) and recombinant viral vectors. In this study, we have attempted to construct an efficient protein-based vaccine using biodegradable poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs), which are capable of inducing potent cellular immunity. A significant expansion of CD8+ T cells specific to the major histocompatibility complex class I-restricted gp120 epitope was observed in mice intranasally immunized once with gp120-carrying NPs but not with gp120 alone or gp120 together with the B-subunit of cholera toxin. Both the gp120-encapsulating and -immobilizing forms of NPs could induce antigen-specific spleen CD8+ T cells having a functional profile of cytotoxic T lymphocytes. Long-lived memory CD8+ T cells could also be elicited. Although a substantial decay in the effector memory T cells was observed over time in the immunized mice, the central memory T cells remained relatively constant from day 30 to day 238 after immunization. Furthermore, the memory CD8+ T cells rapidly expanded with boosting with the same immunogen. In addition, γ-PGA NPs were found to be a much stronger inducer of antigen-specific CD8+ T-cell responses than nonbiodegradable polystyrene NPs. Thus, γ-PGA NPs carrying various HIV-1 antigens may have great potential as a novel priming and/or boosting tool in current vaccination regimens for the induction of cellular immune responses.


2001 ◽  
Vol 75 (9) ◽  
pp. 4413-4419 ◽  
Author(s):  
Zheng Fan ◽  
Xiao-Li Huang ◽  
Luann Borowski ◽  
John W. Mellors ◽  
Charles R. Rinaldo

ABSTRACT We demonstrate that dendritic cells loaded in vitro with human immunodeficiency virus type 1 (HIV-1) protein-liposome complexes activate HLA class I-restricted anti-HIV-1 cytotoxic T-lymphocyte and gamma interferon (IFN-γ) responses in autologous CD8+ T cells from late-stage HIV-1-infected patients on prolonged combination drug therapy. Interleukin-12 enhanced this effect through an interleukin-2- and IFN-γ-mediated pathway. This suggests that dendritic cells from HIV-1-infected persons can be engineered to evoke stronger anti-HIV-1 CD8+ T-cell reactivity as a strategy to augment antiretroviral therapy.


2008 ◽  
Vol 82 (6) ◽  
pp. 2975-2988 ◽  
Author(s):  
Petra Mooij ◽  
Sunita S. Balla-Jhagjhoorsingh ◽  
Gerrit Koopman ◽  
Niels Beenhakker ◽  
Patricia van Haaften ◽  
...  

ABSTRACT Poxvirus vectors have proven to be highly effective for boosting immune responses in diverse vaccine settings. Recent reports reveal marked differences in the gene expression of human dendritic cells infected with two leading poxvirus-based human immunodeficiency virus (HIV) vaccine candidates, New York vaccinia virus (NYVAC) and modified vaccinia virus Ankara (MVA). To understand how complex genomic changes in these two vaccine vectors translate into antigen-specific systemic immune responses, we undertook a head-to-head vaccine immunogenicity and efficacy study in the pathogenic HIV type 1 (HIV-1) model of AIDS in Indian rhesus macaques. Differences in the immune responses in outbred animals were not distinguished by enzyme-linked immunospot assays, but differences were distinguished by multiparameter fluorescence-activated cell sorter analysis, revealing a difference between the number of animals with both CD4+ and CD8+ T-cell responses to vaccine inserts (MVA) and those that elicit a dominant CD4+ T-cell response (NYVAC). Remarkably, vector-induced differences in CD4+/CD8+ T-cell immune responses persisted for more than a year after challenge and even accompanied antigenic modulation throughout the control of chronic infection. Importantly, strong preexposure HIV-1/simian immunodeficiency virus-specific CD4+ T-cell responses did not prove deleterious with respect to accelerated disease progression. In contrast, in this setting, animals with strong vaccine-induced polyfunctional CD4+ T-cell responses showed efficacies similar to those with stronger CD8+ T-cell responses.


2002 ◽  
Vol 76 (5) ◽  
pp. 2298-2305 ◽  
Author(s):  
Bradley H. Edwards ◽  
Anju Bansal ◽  
Steffanie Sabbaj ◽  
Janna Bakari ◽  
Mark J. Mulligan ◽  
...  

ABSTRACT The importance of CD8+ T-cell responses in the control of human immunodeficiency virus type 1 (HIV-1) infection has been demonstrated, yet few studies have been able to correlate these responses with markers of HIV-1 disease progression. This study measured cell-mediated immune responses using peripheral blood mononuclear cells (PBMC) obtained from 27 patients with chronic HIV-1 infection, the majority of whom were off antiretroviral therapy. The ELISPOT assay was used to detect gamma interferon-secreting PBMC after stimulation with overlapping HIV-1 peptides spanning the Gag, Pol, Env, and Nef proteins in addition to the baculovirus-derived p24 and gp160 proteins. All volunteers had responses to at least one HIV-1-specific peptide. All but one of the subjects (96%) responded to the Gag peptide pool, and 86% responded to the Pol and/or Nef peptide pools. The magnitude and the breadth of T-cell responses directed to either the Gag or p24 peptide pools correlated inversely with viral load in plasma (r = −0.60, P < 0.001 and r = −0.52, P < 0.005, respectively) and directly with absolute CD4+ T-cell counts (r = 0.54, P < 0.01 and r = 0.39, P < 0.05, respectively) using the Spearman rank correlation test. Responses to the Pol and integrase peptide pools also correlated with absolute CD4+ T-cell counts (r = 0.45, P < 0.05 and r = 0.49, P < 0.01, respectively). No correlation with markers of disease progression was seen with specific T-cell responses directed toward the Env or Nef peptides. These data serve as strong evidence that major histocompatibility complex class I presentation of Gag peptides is an essential feature for any HIV-1 vaccine designed to elicit optimal CD8+ T-cell responses.


Sign in / Sign up

Export Citation Format

Share Document