scholarly journals Herpes Simplex Virus Type 2 (HSV-2) Establishes Latent Infection in a Different Population of Ganglionic Neurons than HSV-1: Role of Latency-Associated Transcripts

2006 ◽  
Vol 81 (4) ◽  
pp. 1872-1878 ◽  
Author(s):  
Todd P. Margolis ◽  
Yumi Imai ◽  
Li Yang ◽  
Vicky Vallas ◽  
Philip R. Krause

ABSTRACTHerpes simplex virus type 1 (HSV-1) and HSV-2 cause very similar acute infections but differ in their abilities to reactivate from trigeminal and dorsal root ganglia. To investigate differences in patterns of viral infection, we colabeled murine sensory ganglia for evidence of HSV infection and for the sensory neuron marker A5 or KH10. During acute infection, 7 to 10% of HSV-1 or HSV-2 antigen-positive neurons were A5 positive and 13 to 16% were KH10 positive, suggesting that both viruses reach each type of neuron in a manner proportional to their representation in uninfected ganglia. In murine trigeminal ganglia harvested during HSV latency, 25% of HSV-1 latency-associated transcript (LAT)- and 4% of HSV-2 LAT-expressing neurons were A5 positive, while 12% of HSV-1 LAT- and 42% of HSV-2 LAT-expressing neurons were KH10 positive. A similar difference was observed in murine dorsal root ganglia. These differences could not be attributed to differences in LAT expression levels in A5- versus KH10-positive neurons. Thus, HSV-1 demonstrated a preference for the establishment of latency in A5-positive neurons, while HSV-2 demonstrated a preference for the establishment of latency in KH10-positive neurons. A chimeric HSV-2 mutant that expresses the HSV-1 LAT exhibited an HSV-1 phenotype, preferentially establishing latency in A5-positive neurons. These data imply that the HSV-1 and HSV-2 LAT regions influence the ability of virus to establish latency in different neuronal subtypes. That the same chimeric virus has a characteristic HSV-1 reactivation phenotype further suggests that LAT-influenced establishment of latency in specific neuronal subtypes could be an important part of the mechanism by which LAT influences viral reactivation phenotypes.

2003 ◽  
Vol 77 (18) ◽  
pp. 10037-10046 ◽  
Author(s):  
Daniel J. J. Carr ◽  
James Chodosh ◽  
John Ash ◽  
Thomas E. Lane

ABSTRACT The inflammatory response to acute ocular herpes simplex virus type 1 (HSV-1) infection in mice involves the innate and adaptive immune response, with an associated increase in the secretion of chemokines, including CXCL10 (interferon-inducible protein 10 kDa [IP-10]). Neutralizing antibodies to mouse CXCL10 were used to determine the role of CXCL10 during the acute phase of HSV-1 ocular infection. Treatment of HSV-1-infected mice with antibody to CXCL10 significantly reduced CXCL10 levels in the eye and trigeminal ganglion and reduced mononuclear cell infiltration into the corneal stroma. These results coincided with reduced ICAM-1 and CXCR3 transcript expression, macrophage inflammatory protein-1α and CXCL10 levels, and corneal pathology but increased viral titers in the stroma and trigeminal ganglion. Progression of the virus from the corneal stroma to the retina during acute infection was significantly hindered in anti-CXCL10-treated mice. In addition, colocalization of viral antigen with infiltrating leukocytes in the iris and retina during acute infection suggests that one means by which HSV-1 traffics to the retina involves inflammatory cells (primarily CD11b+ cells). Collectively, the results suggest that CXCL10 expression in the eye initially orchestrates the inflammatory response to acute HSV-1 infection, which facilitates the spread of the virus to other restricted sites within the eye.


2017 ◽  
Vol 9 (2) ◽  
pp. 188-194 ◽  
Author(s):  
Tibor Valyi-Nagy ◽  
Jaivir S. Rathore ◽  
Andrei M. Rakic ◽  
Ranvir S. Rathore ◽  
Paavani Jain ◽  
...  

We present a case of a 34-year-old right-handed Caucasian male with chronic occipital neuralgia refractory to medical therapies and minimally invasive pain procedures who underwent surgical cervical dorsal root ganglionectomy which completely relieved his headaches. The histopathological and immunohistochemical findings of the resected cervical dorsal root ganglia were consistent with active herpes simplex virus type 1 (HSV-1) infection causing ganglionitis. To the best of our knowledge, this case represents the first histopathologically proven HSV-1 cervical dorsal root ganglionitis in humans. This case provides an insight into a possible etiology of occipital neuralgia.


2006 ◽  
Vol 87 (10) ◽  
pp. 2817-2825 ◽  
Author(s):  
Naoyuki Morishige ◽  
James V. Jester ◽  
Julie Naito ◽  
Nelson Osorio ◽  
Andrew Wahlert ◽  
...  

Herpes stromal keratitis (HSK) results from the reactivation of herpes simplex virus type-1 (HSV-1) in the cornea. The subsequent corneal inflammation and neovascularization may lead to scarring and visual loss. The cellular and molecular mechanisms underlying HSK remain unknown. The presence of stromal HSV-1 viral proteins or antigens in the HSK cornea remains a subject of debate. It was recently reported that HSV-1 ICP0 rapidly diffuses out of infected rabbit corneas. To investigate further the presence of HSV-1 ICP0 in the infected cornea, particularly in the corneal stroma, ex vivo confocal microscopy was used to scan rabbit corneas infected with the virus ICP0–EYFP, an HSV-1 derivative (strain 17+) that expresses ICP0 fused to the enhanced yellow fluorescent protein (EYFP). These results demonstrate that ICP0 is expressed in the corneal epithelium and stromal cells (keratocytes) of infected rabbit corneas throughout acute infection. Furthermore, expression of ICP0–EYFP appears localized to punctate, granular deposits within stromal keratocytes, showing both a cytoplasmic and perinuclear localization. These findings provide new data demonstrating that anterior corneal keratocytes become infected and express ICP0 during acute HSV-1 infection.


2002 ◽  
Vol 76 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
John M. Lubinski ◽  
Ming Jiang ◽  
Lauren Hook ◽  
Yueh Chang ◽  
Chad Sarver ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) encodes a complement-interacting glycoprotein, gC, and an immunoglobulin G (IgG) Fc binding glycoprotein, gE, that mediate immune evasion by affecting multiple aspects of innate and acquired immunity, including interfering with complement components C1q, C3, C5, and properdin and blocking antibody-dependent cellular cytotoxicity. Previous studies evaluated the individual contributions of gC and gE to immune evasion. Experiments in a murine model that examines the combined effects of gC and gE immune evasion on pathogenesis are now reported. Virulence of wild-type HSV-1 is compared with mutant viruses defective in gC-mediated C3 binding, gE-mediated IgG Fc binding, or both immune evasion activities. Eliminating both activities greatly increased susceptibility of HSV-1 to antibody and complement neutralization in vitro and markedly reduced virulence in vivo as measured by disease scores, virus titers, and mortality. Studies with C3 knockout mice indicated that other activities attributed to these glycoproteins, such as gC-mediated virus attachment to heparan sulfate or gE-mediated cell-to-cell spread, do not account for the reduced virulence of mutant viruses. The results support the importance of gC and gE immune evasion in vivo and suggest potential new targets for prevention and treatment of HSV disease.


Sign in / Sign up

Export Citation Format

Share Document