scholarly journals Protein-Primed and De Novo Initiation of RNA Synthesis by Norovirus 3Dpol

2006 ◽  
Vol 80 (14) ◽  
pp. 7060-7069 ◽  
Author(s):  
Jacques Rohayem ◽  
Ivonne Robel ◽  
Katrin Jäger ◽  
Ulrike Scheffler ◽  
Wolfram Rudolph

ABSTRACT Noroviruses (Caliciviridae) are RNA viruses with a single-stranded, positive-oriented polyadenylated genome. To date, little is known about the replication strategy of norovirus, a so-far noncultivable virus. We have examined the initiation of replication of the norovirus genome in vitro, using the active norovirus RNA-dependent RNA polymerase (3Dpol), homopolymeric templates, and synthetic subgenomic or antisubgenomic RNA. Initiation of RNA synthesis on homopolymeric templates as well as replication of subgenomic polyadenylated RNA was strictly primer dependent. In this context and as observed for other enteric RNA viruses, i.e., poliovirus, a protein-primed initiation of RNA synthesis after elongation of the VPg by norovirus 3Dpol was postulated. To address this question, norovirus VPg was expressed in Escherichia coli and purified. Incubation of VPg with norovirus 3Dpol generated VPg-poly(U), which primed the replication of subgenomic polyadenylated RNA. In contrast, replication of antisubgenomic RNA was not primer dependent, nor did it depend on a leader sequence, as evidenced by deletion analysis of the 3′ termini of subgenomic and antisubgenomic RNA. On nonpolyadenylated RNA, i.e., antisubgenomic RNA, norovirus 3Dpol initiated RNA synthesis de novo and terminated RNA synthesis by a poly(C) stretch. Interestingly, on poly(C) RNA templates, norovirus 3Dpol initiated RNA synthesis de novo in the presence of high concentrations of GTP. We propose a novel model for initiation of replication of the norovirus genome by 3Dpol, with a VPg-protein-primed initiation of replication of polyadenylated genomic RNA and a de novo initiation of replication of antigenomic RNA.

2020 ◽  
Vol 95 (1) ◽  
Author(s):  
Dongdong Cao ◽  
Yunrong Gao ◽  
Claire Roesler ◽  
Samantha Rice ◽  
Paul D'Cunha ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) is a nonsegmented negative-sense (NNS) RNA virus and shares a similar RNA synthesis strategy with other members of NNS RNA viruses, such as measles, rabies virus, and Ebola virus. RSV RNA synthesis is catalyzed by a multifunctional RNA-dependent RNA polymerase (RdRP), which is composed of a large (L) protein that catalyzes three distinct enzymatic functions and an essential coenzyme phosphoprotein (P). Here, we successfully prepared highly pure, full-length, wild-type and mutant RSV polymerase (L-P) complexes. We demonstrated that the RSV polymerase could carry out both de novo and primer-based RNA synthesis. We defined the minimal length of the RNA template for in vitro de novo RNA synthesis using the purified RSV polymerase as 8 nucleotides (nt), shorter than previously reported. We showed that the RSV polymerase catalyzed primer-dependent RNA elongation with different lengths of primers on both short (10-nt) and long (25-nt) RNA templates. We compared the sequence specificity of different viral promoters and identified positions 3, 5, and 8 of the promoter sequence as essential to the in vitro RSV polymerase activity, consistent with the results previously mapped with the in vivo minigenome assay. Overall, these findings agree well with those of previous biochemical studies and extend our understanding of the promoter sequence and the mechanism of RSV RNA synthesis. IMPORTANCE As a major human pathogen, RSV affects 3.4 million children worldwide annually. However, no effective antivirals or vaccines are available. An in-depth mechanistic understanding of the RSV RNA synthesis machinery remains a high priority among the NNS RNA viruses. There is a strong public health need for research on this virus, due to major fundamental gaps in our understanding of NNS RNA virus replication. As the key enzyme executing transcription and replication of the virus, the RSV RdRP is a logical target for novel antiviral drugs. Therefore, exploring the primer-dependent RNA elongation extends our mechanistic understanding of the RSV RNA synthesis. Further fine mapping of the promoter sequence paves the way to better understand the function and structure of the RSV polymerase.


2006 ◽  
Vol 81 (4) ◽  
pp. 1858-1871 ◽  
Author(s):  
Stephen W. B. Fullerton ◽  
Martina Blaschke ◽  
Bruno Coutard ◽  
Julia Gebhardt ◽  
Alexander Gorbalenya ◽  
...  

ABSTRACT Sapoviruses are one of the major agents of acute gastroenteritis in childhood. They form a tight genetic cluster (genus) in the Caliciviridae family that regroups both animal and human pathogenic strains. No permissive tissue culture has been developed for human sapovirus, limiting its characterization to surrogate systems. We report here on the first extensive characterization of the key enzyme of replication, the RNA-dependent RNA polymerase (RdRp) associated with the 3Dpol-like protein. Enzymatically active sapovirus 3Dpol and its defective mutant were expressed in Escherichia coli and purified. The overall structure of the sapovirus 3Dpol was determined by X-ray crystallography to 2.32-Å resolution. It revealed a right hand fold typical for template-dependent polynucleotide polymerases. The carboxyl terminus is located within the active site cleft, as observed in the RdRp of some (norovirus) but not other (lagovirus) caliciviruses. Sapovirus 3Dpol prefers Mn2+ over Mg2+ but may utilize either as a cofactor in vitro. In a synthetic RNA template-dependent reaction, sapovirus 3Dpol synthesizes a double-stranded RNA or labels the template 3′ terminus by terminal transferase activity. Initiation of RNA synthesis occurs de novo on heteropolymeric templates or in a primer-dependent manner on polyadenylated templates. Strikingly, this mode of initiation of RNA synthesis was also described for norovirus, but not for lagovirus, suggesting structural and functional homologies in the RNA-dependent RNA polymerase of human pathogenic caliciviruses. This first experimental evidence makes sapovirus 3Dpol an attractive target for developing drugs to control calicivirus infection in humans.


2014 ◽  
Vol 89 (1) ◽  
pp. 249-261 ◽  
Author(s):  
Jiqin Wu ◽  
Guoliang Lu ◽  
Bo Zhang ◽  
Peng Gong

ABSTRACTThe flavivirus NS5 is a natural fusion of a methyltransferase (MTase) and an RNA-dependent RNA polymerase (RdRP). Analogous to DNA-dependent RNA polymerases, the NS5 polymerase initiates RNA synthesis through ade novomechanism and then makes a transition to a processive elongation phase. However, whether and how the MTase affects polymerase activities through intramolecular interactions remain elusive. By solving the crystal structure of the Japanese encephalitis virus (JEV) NS5, we recently identified an MTase-RdRP interface containing a set of six hydrophobic residues highly conserved among flaviviruses. To dissect the functional relevance of this interface, we made a series of JEV NS5 constructs with mutations of these hydrophobic residues and/or with the N-terminal first 261 residues and other residues up to the first 303 residues deleted. Compared to the wild-type (WT) NS5, full-length NS5 variants exhibited consistent up- or downregulation of the initiation activities in two types of polymerase assays. Five representative full-length NS5 constructs were then tested in an elongation assay, from which the apparent single-nucleotide incorporation rate constant was estimated. Interestingly, two constructs exhibited different elongation kinetics from the WT NS5, with an effect rather opposite to what was observed at initiation. Moreover, constructs with MTase and/or the linker region (residues 266 to 275) removed still retained polymerase activities, albeit at overall lower levels. However, further removal of the N-terminal extension (residues 276 to 303) abolished regular template-directed synthesis. Together, our data showed that the MTase-RdRP interface is relevant in both polymerase initiation and elongation, likely with different regulation mechanisms in these two major phases of RNA synthesis.IMPORTANCEThe flavivirus NS5 is very unique in having a methyltransferase (MTase) placed on the immediate N terminus of its RNA-dependent RNA polymerase (RdRP). We recently solved the crystal structure of the full-length NS5, which revealed a conserved interface between MTase and RdRP. Building on this discovery, here we carried outin vitropolymerase assays to address the functional relevance of the interface interactions. By explicitly probing polymerase initiation and elongation activities, we found that perturbation in the MTase-RdRP interface had different impacts on different phases of synthesis, suggesting that the roles and contribution of the interface interactions may change upon phase transitions. By comparing the N-terminal-truncated enzymes with the full-length NS5, we collected data to indicate the indispensability to regular polymerase activities of a region that was functionally unclarified previously. Taken together, we provide biochemical evidence and mechanistic insights for the cross talk between the two enzyme modules of flavivirus NS5.


2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Philipp Schult ◽  
Maren Nattermann ◽  
Chris Lauber ◽  
Stefan Seitz ◽  
Volker Lohmann

ABSTRACT Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo. Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5′ untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps. IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo. Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.


2010 ◽  
Vol 84 (12) ◽  
pp. 5923-5935 ◽  
Author(s):  
S. Chinnaswamy ◽  
A. Murali ◽  
P. Li ◽  
K. Fujisaki ◽  
C. C. Kao

ABSTRACT The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) has been proposed to change conformations in association with RNA synthesis and to interact with cellular proteins. In vitro, the RdRp can initiate de novo from the ends of single-stranded RNA or extend a primed RNA template. The interactions between the Δ1 loop and thumb domain in NS5B are required for de novo initiation, although it is unclear whether these interactions are within an NS5B monomer or are part of a higher-order NS5B oligomeric complex. This work seeks to address how polymerase conformation and/or oligomerization affects de novo initiation. We have shown that an increasing enzyme concentration increases de novo initiation by the genotype 1b and 2a RdRps while primer extension reactions are not affected or inhibited under similar conditions. Initiation-defective mutants of the HCV polymerase can increase de novo initiation by the wild-type (WT) polymerase. GTP was also found to stimulate de novo initiation. Our results support a model in which the de novo initiation-competent conformation of the RdRp is stimulated by oligomeric contacts between individual subunits. Using electron microscopy and single-molecule reconstruction, we attempted to visualize the low-resolution conformations of a dimer of a de novo initiation-competent HCV RdRp.


2003 ◽  
Vol 47 (8) ◽  
pp. 2674-2681 ◽  
Author(s):  
Weidong Zhong ◽  
Haoyun An ◽  
Dinesh Barawkar ◽  
Zhi Hong

ABSTRACT Replication of hepatitis C virus (HCV) RNA is catalyzed by the virally encoded RNA-dependent RNA polymerase NS5B. It is believed that the viral polymerase utilizes a de novo or primer-independent mechanism for initiation of RNA synthesis. Our previous work has shown that dinucleotides were efficient initiation molecules for NS5B in vitro (W. Zhong, E. Ferrari, C. A. Lesburg, D. Maag, S. K. Ghosh, C. E. Cameron, J. Y. Lau, and Z. Hong, J. Virol. 74:9134-9143, 2000). In this study, we further demonstrated that dinucleotide analogues could serve as inhibitors of de novo initiation of RNA synthesis directed by HCV NS5B. Both mononucleotide- and dinucleotide-initiated RNA syntheses were affected by dinucleotide analogues. The presence of the 5′-phosphate group in the dinucleotide compounds was required for efficient inhibition of de novo initiation. Optimal inhibitory activity also appeared to be dependent on the base-pairing potential between the compounds and the template terminal bases. Because the initiation process is a rate-limiting step in viral RNA replication, inhibitors that interfere with the initiation process will have advantages in suppressing virus replication. The use of dinucleotide analogues as inhibitor molecules to target viral replication initiation represents a novel approach to antiviral interference.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1738
Author(s):  
Alesia A. Levanova ◽  
Eeva J. Vainio ◽  
Jarkko Hantula ◽  
Minna M. Poranen

Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2′-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.


2019 ◽  
Author(s):  
Joseph L. DeRisi ◽  
Greg Huber ◽  
Amy Kistler ◽  
Hanna Retallack ◽  
Michael Wilkinson ◽  
...  

ABSTRACTNarnaviruses have been described as positive-sense RNA viruses with a remarkably simple genome of ∼ 3 kb, encoding only a highly conserved RNA-dependent RNA polymerase (RdRp). Many narnaviruses, however, are ‘ambigrammatic’ and harbour an additional uninterrupted open reading frame (ORF) covering almost the entire length of the reverse complement strand. No function has been described for this ORF, yet the absence of stops is conserved across diverse narnaviruses, and in every case the codons in the reverse ORF and the RdRp are aligned. The > 3 kb ORF overlap on opposite strands, unprecedented among RNA viruses, motivates an exploration of the constraints imposed or alleviated by the codon alignment. Here, we show that only when the codon frames are aligned can all stop codons be eliminated from the reverse strand by synonymous single-nucleotide substitutions in the RdRp gene, suggesting a mechanism for de novo gene creation within a strongly conserved amino-acid sequence. It will be fascinating to explore what implications this coding strategy has for other aspects of narnavirus biology. Beyond narnaviruses, our rapidly expanding catalogue of viral diversity may yet reveal additional examples of this broadly-extensible principle for ambigrammatic-sequence development.


2000 ◽  
Vol 74 (2) ◽  
pp. 851-863 ◽  
Author(s):  
Guangxiang Luo ◽  
Robert K. Hamatake ◽  
Danielle M. Mathis ◽  
Jason Racela ◽  
Karen L. Rigat ◽  
...  

ABSTRACT Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn2+ than in the presence of Mg2+. When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a “copy-back” mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3′ end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (≥50 μM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.


Sign in / Sign up

Export Citation Format

Share Document