scholarly journals Transmembrane Domains of Hepatitis C Virus Envelope Glycoproteins: Residues Involved in E1E2 Heterodimerization and Involvement of These Domains in Virus Entry

2006 ◽  
Vol 81 (5) ◽  
pp. 2372-2381 ◽  
Author(s):  
Yann Ciczora ◽  
Nathalie Callens ◽  
François Penin ◽  
Eve-Isabelle Pécheur ◽  
Jean Dubuisson

ABSTRACT The transmembrane (TM) domains of hepatitis C virus (HCV) envelope glycoproteins E1 and E2 have been shown to play multiple roles during the biogenesis of the E1E2 heterodimer. By using alanine scanning insertion mutagenesis within the TM domains of HCV envelope glycoproteins, we have previously shown that the central regions of these domains as well as the N-terminal part of the TM domain of E1 are involved in heterodimerization. Here, we used a tryptophan replacement scan of these regions to identify individual residues that participate in those interactions. Our mutagenesis study identified at least four residues involved in heterodimerization: Gly 354, Gly 358, Lys 370, and Asp 728. Interestingly, Gly 354 and Gly 358 belong to a GXXXG oligomerization motif. Our tryptophan mutants were also used to generate retrovirus-based, HCV-pseudotyped particles (HCVpp) in order to analyze the effects of these mutations on virus entry. Surprisingly, two mutants consistently displayed higher infectivity compared to that of the wild type. In contrast, HCVpp infectivity was strongly affected for many mutants, despite normal E1E2 heterodimerization and normal levels of incorporation of HCV glycoproteins into HCVpp. The characterization of some of these HCVpp mutants in the recently developed in vitro fusion assay using fluorescent-labeled liposomes indicated that mutations reducing HCVpp infectivity without altering E1E2 heterodimerization affected the fusion properties of HCV envelope glycoproteins. In conclusion, this mutational analysis identified residues involved in E1E2 heterodimerization and revealed that the TM domains of HCV envelope glycoproteins play a major role in the fusion properties of these proteins.

2009 ◽  
Vol 50 ◽  
pp. S128
Author(s):  
R. Moenne-Loccoz ◽  
C. Rajafinjatovo ◽  
S. Fafi-Kremer ◽  
F. Habersetzer ◽  
A. Ananna ◽  
...  

2002 ◽  
Vol 9 (3) ◽  
pp. 174-182 ◽  
Author(s):  
L. V. Olenina ◽  
L. I. Nikolaeva ◽  
B. N. Sobolev ◽  
N. P. Blokhina ◽  
A. I. Archakov ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Samantha A. Yost ◽  
Yuanyuan Wang ◽  
Joseph Marcotrigiano

2001 ◽  
pp. 1031-1032
Author(s):  
Ekaterina F. Kolesanova ◽  
Ludmila V. Olenina ◽  
Boris N. Sobolev ◽  
Ludmila I. Nikolaeva ◽  
Alexander I. Archakov

2010 ◽  
Vol 202 (6) ◽  
pp. 862-866 ◽  
Author(s):  
Ranjit Ray ◽  
Keith Meyer ◽  
Arup Banerjee ◽  
Arnab Basu ◽  
Stephen Coates ◽  
...  

2011 ◽  
Vol 286 (37) ◽  
pp. 31984-31992 ◽  
Author(s):  
Johanna Fraser ◽  
Irene Boo ◽  
Pantelis Poumbourios ◽  
Heidi E. Drummer

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 64
Author(s):  
Rahmad Akbar ◽  
Siti Azma Jusoh

Envelope glycoproteins of Hepatitis C Virus (HCV) play an important role in the virus assembly and initial entry into host cells. Conserved charged residues of the E2 transmembrane (TM) domain were shown to be responsible for the heterodimerization with envelope glycoprotein E1. Despite intensive research on both envelope glycoproteins, the structural information is still not fully understood. Recent findings have revealed that the stem (ST) region of E2 also functions in the initial stage of the viral life cycle. We have previously shown the effect of the conserved charged residues on the TM helix monomer of E2. Here, we extended the model of the TM domain by adding the adjacent ST segment. Explicit molecular dynamics simulations were performed for the E2 amphiphilic segment of the ST region connected to the putative TM domain (residues 683-746). Structural conformation and behavior are studied and compared with the nuclear magnetic resonance (NMR)-derived segment of E2 (2KQZ.pdb). We observed that the central helix of the ST region (residues 689 - 703) remained stable as a helix in-plane to the lipid bilayer. Furthermore, the TM domain appeared to provide minimal contribution to the structural stability of the amphipathic region. This study also provides insight into the orientation and positional preferences of the ST segment with respect to the membrane lipid-water interface.


1999 ◽  
Vol 80 (9) ◽  
pp. 2337-2341 ◽  
Author(s):  
Ken Grace ◽  
Margaret Gartland ◽  
Peter Karayiannis ◽  
Michael J. McGarvey ◽  
Berwyn Clarke

Since its characterization in 1995, there has been increasing interest in the significance of GB virus B (GBV-B) due to its close phylogenetic relationship to hepatitis C virus (HCV). The genome of GBV-B is similar in length and organization to that of HCV and the two viruses share sequence similarity in their 5′ untranslated regions (5′UTR). A secondary structure model of the GBV-B 5′UTR has been proposed by comparative sequence analysis with HCV. The highly conserved secondary structure, present in HCV and the pestiviruses, is also present in the 5′UTR of GBV-B. Translation of the HCV polyprotein initiates via an internal ribosome entry site (IRES) and it is proposed that the GBV-B UTR may function in a similar manner. Dicistronic reporter constructs were made to investigate the function of the GBV-B 5′UTR. Mutational analysis and in vitro translation experiments demonstrate that GBV-B initiates translation via an IRES.


Sign in / Sign up

Export Citation Format

Share Document