tm domain
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 49)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Xinyu Teng ◽  
Danqi Sheng ◽  
Jin Wang ◽  
Ye Yu ◽  
Motoyuki Hattori

MgtE is a Mg2+-selective ion channel whose orthologs are widely distributed from prokaryotes to eukaryotes, including humans, and play an important role in the maintenance of cellular Mg2+ homeostasis. Previous functional analyses showed that MgtE transports divalent cations with high selectivity for Mg2+ over Ca2+. Whereas the high-resolution structure determination of the MgtE transmembrane (TM) domain in complex with Mg2+ ions revealed a Mg2+ recognition mechanism of MgtE, the previous Ca2+-bound structure of the MgtE TM domain was determined only at moderate resolution (3.2 angstrom resolution), which was insufficient to visualize the water molecules coordinated to Ca2+ ions. Thus, the structural basis of the ion selectivity of MgtE for Mg2+ over Ca2+ has remained unclear. Here, we showed that the metal-binding site of the MgtE TM domain binds to Mg2+ ~500-fold more strongly than Ca2+. We then determined the crystal structure of the MgtE TM domain in complex with Ca2+ ions at a higher resolution (2.5 angstrom resolution), allowing us to reveal hexahydrated Ca2+, which is similarly observed in the previously determined Mg2+-bound structure but with extended metal-oxygen bond lengths. Our structural, biochemical, and computational analyses provide mechanistic insights into the ion selectivity of MgtE for Mg2+ over Ca2+.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junyuan Cao ◽  
Siqi Dong ◽  
Yang Liu ◽  
Minmin Zhou ◽  
Jiao Guo ◽  
...  

Lujo virus (LUJV) belongs to the Old World (OW) genus Mammarenavirus (family Arenaviridae). It is categorized as a biosafety level (BSL) 4 agent. Currently, there are no U.S. Food and Drug Administration (FDA)-approved drugs or vaccines specifically for LUJV or other pathogenic OW mammarenaviruses. Here, a high-throughput screening of an FDA-approved drug library was conducted using pseudotype viruses bearing LUJV envelope glycoprotein (GPC) to identify inhibitors of LUJV entry. Three hit compounds, trametinib, manidipine, and lercanidipine, were identified as LUJV entry inhibitors in the micromolar range. Mechanistic studies revealed that trametinib inhibited LUJV GPC-mediated membrane fusion by targeting C410 [located in the transmembrane (TM) domain], while manidipine and lercanidipine inhibited LUJV entry by acting as calcium channel blockers. Meanwhile, all three hits extended their antiviral spectra to the entry of other pathogenic mammarenaviruses. Furthermore, all three could inhibit the authentic prototype mammarenavirus, lymphocytic choriomeningitis virus (LCMV), and could prevent infection at the micromolar level. This study shows that trametinib, manidipine, and lercanidipine are candidates for LUJV therapy and highlights the critical role of calcium in LUJV infection. The presented findings reinforce the notion that the key residue(s) located in the TM domain of GPC provide an entry-targeted platform for designing mammarenavirus inhibitors.


2021 ◽  
Author(s):  
Ved Mehta ◽  
Basavraj Khanppnavar ◽  
Dina Schuster ◽  
Irene Vercellino ◽  
Angela Kosturanova ◽  
...  

AbstractMycobacterium tuberculosis adenylyl cyclase (AC) Cya is an evolutionary ancestor of the mammalian membrane ACs and a model system for studies of their structure and function. Although the vital role of ACs in cellular signaling is well established, the function of their transmembrane (TM) regions remains unknown. Here we describe the cryo-EM structure of Cya bound to a stabilizing nanobody at 3.6 Å resolution. The TM helices 1-5 form a structurally conserved domain that facilitates the assembly of the helical and catalytic domains. The TM region contains discrete pockets accessible from the extracellular and cytosolic side of the membrane. Neutralization of the negatively charged extracellular pocket Ex1 destabilizes the cytosolic helical domain and reduces the catalytic activity of the enzyme. The TM domain acts as a functional component of Cya, guiding the assembly of the catalytic domain and providing the means for direct regulation of catalytic activity in response to extracellular ligands.One-Sentence SummaryCryo-EM structure of M. tuberculosis adenylyl cyclase Cya provides clues to the role of its transmembrane domain


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eunyoung Jeong ◽  
Yoojoong Kim ◽  
Jihong Jeong ◽  
Yunje Cho

AbstractGPR158, a class C orphan GPCR, functions in cognition, stress-induced mood control, and synaptic development. Among class C GPCRs, GPR158 is unique as it lacks a Venus flytrap-fold ligand-binding domain and terminates Gαi/o protein signaling through the RGS7-Gβ5 heterodimer. Here, we report the cryo-EM structures of GPR158 alone and in complex with one or two RGS7-Gβ5 heterodimers. GPR158 dimerizes through Per-Arnt-Sim-fold extracellular and transmembrane (TM) domains connected by an epidermal growth factor-like linker. The TM domain (TMD) reflects both inactive and active states of other class C GPCRs: a compact intracellular TMD, conformations of the two intracellular loops (ICLs) and the TMD interface formed by TM4/5. The ICL2, ICL3, TM3, and first helix of the cytoplasmic coiled-coil provide a platform for the DHEX domain of one RGS7 and the second helix recruits another RGS7. The unique features of the RGS7-binding site underlie the selectivity of GPR158 for RGS7.


Author(s):  
Eric Oldfield ◽  
Satish R. Malwal

Lipid transporters play an important role in most if not all organisms, ranging from bacteria to humans. For example, in Mycobacterium tuberculosis, the trehalose monomycolate transporter MmpL3 is involved in cell wall biosynthesis, while in humans, cholesterol transporters are involved in normal cell function as well as in disease. Here, using structural and bioinformatics information, we propose that there are proteins that also contain “MmpL3-like” (MMPL) transmembrane (TM) domains in many protozoa, including Trypanosoma cruzi, as well as in the bacterium Staphylococcus aureus, where the fatty acid transporter FarE has the same set of “active-site” residues as those found in the mycobacterial MmpL3s, and in T. cruzi. We also show that there are strong sequence and predicted structural similarities between the TM proton-translocation domain seen in the X-ray structures of mycobacterial MmpL3s and several human as well as fungal lipid transporters, leading to the proposal that there are similar proteins in apicomplexan parasites, and in plants. The animal, fungal, apicomplexan and plant proteins have larger extra-membrane domains than are found in the bacterial MmpL3, but they have a similar TM domain architecture, with the introduction of a (catalytically essential) Phe>His residue change, and a Ser/Thr H-bond network, involved in H -transport. Overall, the results are of interest since they show that MMPL-family proteins are present in essentially all life-forms: archaea, bacteria, protozoa, fungi, plants and animals and, where known, they are involved in “lipid” (glycolipid, phospholipid, sphingolipid, fatty acid, cholesterol, ergosterol) transport, powered by transmembrane molecular pumps having similar structures.


2021 ◽  
Author(s):  
Amita R. Sahoo ◽  
Paulo C. T. Souza ◽  
Zhiyuan Meng ◽  
Matthias Buck

AbstractDetermination of the structure and dynamics of transmembrane (TM) domains of single-transmembrane receptors is key to understanding their mechanism of signal transduction across the plasma membrane. Although many studies have been performed on isolated soluble extra- and intracellular receptor domains in aqueous solutions, limited knowledge exists on the lipid embedded TM region. In this study, we predict the assembly of alternate configurations of receptor TM domain dimers using the Martini 3 force field for coarse-grain (CG) molecular dynamic simulations. This recent version of Martini has new bead types and sizes, which allows more accurate predictions of molecular packing and interactions compared to the previous version. Our results with Martini 3 simulations show overall good agreement with ab initio predictions using PREDDIMER and with available NMR derived structures for TM helix dimers. Understanding and predicting the association TM domains may help us to better understand the signalling mechanism of TM receptors, in turn providing the opportunity for development of new pharmaceuticals, some of which are peptide based.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1776
Author(s):  
Pathum Ekanayaka ◽  
Byeong-Hoon Lee ◽  
Asela Weerawardhana ◽  
Kiramage Chathuranga ◽  
Jong-Hyeon Park ◽  
...  

As a structural protein of the Foot-and-mouth disease virus (FMDV), VP3 plays a vital role in virus assembly and inhibiting the interferon (IFN) signal transduction to promote FMDV replication. Previous studies demonstrated that FMDV VP3 blocks the type-I IFN response by inhibiting the mRNA expression of the mitochondrial antiviral-signaling protein (MAVS); however, the underlying mechanism is poorly understood. Here, we describe the specificity of FMDV VP3 interaction with the transmembrane (TM) domain of MAVS as FMDV driven type-I IFN inhibitory mechanism for its effective replication. The TM domain of MAVS governs the mitochondria localization of MAVS, and it is a key factor in type-I IFN signaling transduction via MAVS aggregation. Thereby, the interaction of FMDV VP3 with the TM domain of MAVS leads to the inhibition of MAVS mitochondria localization, self-association, and aggregation, resulting in the suppression of type-I IFN response. Collectively, these results provide a clear understanding of a key molecular mechanism used by the FMDV VP3 for the suppression of IFN responses via targeting MAVS.


2021 ◽  
Author(s):  
Junyuan Cao ◽  
Yang Liu ◽  
Siqi Dong ◽  
Minmin Zhou ◽  
Jiao Guo ◽  
...  

The Lujo virus (LUJV) belongs to the Old World (OW) genus Mammarenavirus (family Arenaviridae); it is categorized as a biosafety level (BSL) 4 agent. Currently, there are no U.S. Food and Drug Administration (FDA)-approved drugs or vaccines specifically for LUJV or other pathogenic OW mammarenaviruses. Here, a high-throughput screening of an FDA-approved drug library was conducted using pseudotype viruses bearing LUJV envelope glycoprotein (GPC) to identify inhibitors of LUJV entry. Three hit compounds, trametinib, manidipine, and lercanidipine, were identified as LUJV entry inhibitors in the micromolar range. Mechanistic studies revealed that trametinib inhibited LUJV GPC-mediated membrane fusion by targeting C410 (located in the transmembrane (TM) domain), while manidipine and lercanidipine inhibited LUJV entry by acting as calcium channel blockers. Meanwhile, all three hits extended their antiviral spectra to the entry of other pathogenic mammarenaviruses. Furthermore, all three could inhibit the authentic prototype mammarenavirus, lymphocytic choriomeningitis virus (LCMV), and could prevent infection at the micromolar level. This study shows that trametinib, manidipine, and lercanidipine are candidates for LUJV therapy, and highlights the critical role of calcium in LUJV infection. The presented findings reinforce the notion that the key residue(s) located in the TM domain of GPC provide an entry-targeted platform for designing mammarenavirus inhibitors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gustavo Fenalti ◽  
Nicolas Villanueva ◽  
Mark Griffith ◽  
Barbra Pagarigan ◽  
Sirish Kaushik Lakkaraju ◽  
...  

AbstractCD47 is the only 5-transmembrane (5-TM) spanning receptor of the immune system. Its extracellular domain (ECD) is a cell surface marker of self that binds SIRPα and inhibits macrophage phagocytosis, and cancer immuno-therapy approaches in clinical trials are focused on blocking CD47/SIRPα interaction. We present the crystal structure of full length CD47 bound to the function-blocking antibody B6H12. CD47 ECD is tethered to the TM domain via a six-residue peptide linker (114RVVSWF119) that forms an extended loop (SWF loop), with the fundamental role of inserting the side chains of W118 and F119 into the core of CD47 extracellular loop region (ECLR). Using hydrogen-deuterium exchange and molecular dynamics simulations we show that CD47’s ECLR architecture, comprised of two extracellular loops and the SWF loop, creates a molecular environment stabilizing the ECD for presentation on the cell surface. These findings provide insights into CD47 immune recognition, signaling and therapeutic intervention.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Debbie Hay ◽  
David R. Poyner ◽  
Christopher S. Walker

This receptor family comprises a group of receptors for the calcitonin/CGRP family of peptides. The calcitonin (CT), amylin (AMY), calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on CGRP, AM, AMY, and CT receptors [131, 74, 71]) are generated by the genes CALCR (which codes for the CT receptor) and CALCRL (which codes for the calcitonin receptor-like receptor, CLR, previously known as CRLR). Their function and pharmacology are altered in the presence of RAMPs (receptor activity-modifying proteins), which are single TM domain proteins of ca. 150 amino acids, identified as a family of three members; RAMP1, RAMP2 and RAMP3. There are splice variants of the CT receptor; these in turn produce variants of the AMY receptor [131], some of which can be potently activated by CGRP. The endogenous agonists are the peptides calcitonin, α-CGRP (formerly known as CGRP-I), β-CGRP (formerly known as CGRP-II), amylin (occasionally called islet-amyloid polypeptide, diabetes-associated polypeptide), adrenomedullin and adrenomedullin 2/intermedin. There are species differences in peptide sequences, particularly for the CTs. CTR-stimulating peptide (CRSP) is another member of the family with selectivity for the CT receptor but it is not expressed in humans [94]. CLR (calcitonin receptor-like receptor) by itself binds no known endogenous ligand, but in the presence of RAMPs it gives receptors for CGRP, adrenomedullin and adrenomedullin 2/intermedin. There are several approved drugs that target this receptor family, such as pramlintide, erenumab, and the "gepant" class of CGRP receptor antagonists.


Sign in / Sign up

Export Citation Format

Share Document