scholarly journals Determination of the Ex Vivo Rates of Human Immunodeficiency Virus Type 1 Reverse Transcription by Using Novel Strand-Specific Amplification Analysis

2007 ◽  
Vol 81 (9) ◽  
pp. 4798-4807 ◽  
Author(s):  
David C. Thomas ◽  
Yegor A. Voronin ◽  
Galina N. Nikolenko ◽  
Jianbo Chen ◽  
Wei-Shau Hu ◽  
...  

ABSTRACT Replication of human immunodeficiency virus type 1 (HIV-1), like all organisms, involves synthesis of a minus-strand and a plus-strand of nucleic acid. Currently available PCR methods cannot distinguish between the two strands of nucleic acids. To carry out detailed analysis of HIV-1 reverse transcription from infected cells, we have developed a novel strand-specific amplification (SSA) assay using single-stranded padlock probes that are specifically hybridized to a target strand, ligated, and quantified for sensitive analysis of the kinetics of HIV-1 reverse transcription in cells. Using SSA, we have determined for the first time the ex vivo rates of HIV-1 minus-strand DNA synthesis in 293T and human primary CD4+ T cells (∼68 to 70 nucleotides/min). We also determined the rates of minus-strand DNA transfer (∼4 min), plus-strand DNA transfer (∼26 min), and initiation of plus-strand DNA synthesis (∼9 min) in 293T cells. Additionally, our results indicate that plus-strand DNA synthesis is initiated at multiple sites and that several reverse transcriptase inhibitors influence the kinetics of minus-strand DNA synthesis differently, providing insights into their mechanism of inhibition. The SSA technology provides a novel approach to analyzing DNA replication processes and should facilitate the development of new antiretroviral drugs that target specific steps in HIV-1 reverse transcription.

2005 ◽  
Vol 79 (4) ◽  
pp. 2199-2210 ◽  
Author(s):  
Yan Zhou ◽  
Haili Zhang ◽  
Janet D. Siliciano ◽  
Robert F. Siliciano

ABSTRACT In untreated human immunodeficiency virus type 1 (HIV-1) infection, most viral genomes in resting CD4+ T cells are not integrated into host chromosomes. This unintegrated virus provides an inducible latent reservoir because cellular activation permits integration, virus gene expression, and virus production. It remains controversial whether HIV-1 is stable in this preintegration state. Here, we monitored the fate of HIV-1 in resting CD4+ cells by using a green fluorescent protein (GFP) reporter virus carrying an X4 envelope. After virus entry into resting CD4+ T cells, both rescuable virus gene expression, visualized with GFP, and rescuable virion production, assessed by p24 release, decayed with a half-life of 2 days. In these cells, reverse transcription goes to completion over 2 to 3 days, and 50% of the viruses that have entered undergo functional decay before reverse transcription is complete. We distinguished two distinct but closely related factors contributing to loss of rescuable virus. First, some host cells undergo virus-induced apoptosis upon viral entry, thereby reducing the amount of rescuable virus. Second, decay processes directly affecting the virus both before and after the completion of reverse transcription contribute to the loss of rescuable virus. The functional half-life of full-length, integration-competent reverse transcripts is only 1 day. We propose that rapid intracellular decay processes compete with early steps in viral replication in infected CD4+ T cells. Decay processes dominate in resting CD4+ T cells as a result of the slow kinetics of reverse transcription and blocks at subsequent steps. Therefore, the reservoir of unintegrated HIV-1 in recently infected resting CD4+ T cells is highly labile.


2000 ◽  
Vol 74 (18) ◽  
pp. 8324-8334 ◽  
Author(s):  
Yuki Ohi ◽  
Jared L. Clever

ABSTRACT The genome of human immunodeficiency virus type 1 (HIV-1) contains two direct repeats (R) of 97 nucleotides at each end. These elements are of critical importance during the first-strand transfer of reverse transcription, during which the minus-strand strong-stop DNA (−sssDNA) is transferred from the 5′ end to the 3′ end of the genomic RNA. This transfer is critical for the synthesis of the full-length minus-strand cDNA. These repeats also contain a variety of other functional domains involved in many aspects of the viral life cycle. In this study, we have introduced a series of mutations into the 5′, the 3′, or both R sequences designed to avoid these other functional domains. Using a single-round infectivity assay, we determined the ability of these mutants to undergo the various steps of reverse transcription utilizing a semiquantitative PCR analysis. We find that mutations within the first 10 nucleotides of either the 5′ or the 3′ R sequence resulted in virions that were markedly defective for reverse transcription in infected cells. These mutations potentially introduce mismatches between the full-length −sssDNA and 3′ acceptor R. Even mutations that would create relatively small mismatches, as little as 3 bp, resulted in inefficient reverse transcription. In contrast, virions containing identically mutated R elements were not defective for reverse transcription or infectivity. Using an endogenous reverse transcription assay with disrupted virus, we show that virions harboring the 5′ or the 3′ R mutations were not intrinsically defective for DNA synthesis. Similarly sized mismatches slightly further downstream in either the 5′, the 3′, or both R sequences were not detrimental to continued reverse transcription in infected cells. These data are consistent with the idea that certain mismatches within 10 nucleotides downstream of the U3-R junction in HIV-1 cause defects in the stability of the cDNA before or during the first-strand transfer of reverse transcription leading to the rapid disappearance of the −sssDNA in infected cells. These data also suggest that the great majority of first-strand transfers in HIV-1 occur after the copying of virtually the entire 5′ R.


2001 ◽  
Vol 75 (2) ◽  
pp. 672-686 ◽  
Author(s):  
Mark D. Driscoll ◽  
Marie-Pierre Golinelli ◽  
Stephen H. Hughes

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), nucleocapsid protein (NC), genomic RNA, and the growing DNA strand all influence the copying of the HIV-1 RNA genome into DNA. A detailed understanding of these activities is required to understand the process of reverse transcription. HIV-1 viral DNA is initiated from a tRNA3 Lys primer bound to the viral genome at the primer binding site. The U3 and R regions of the RNA genome are the first sequences to be copied. The TAR hairpin, a structure found within the R region of the viral genome, is the site of increased RT pausing, RNase H activity, and RT dissociation. Template RNA was digested approximately 17 bases behind the site where polymerase paused at the base of TAR. In most template RNAs, this was the only cleavage made by the RT responsible for initiating polymerization. If the RT that initiated DNA synthesis dissociated from the base of the TAR hairpin and an RT rebound at the end of the primer, there was competition between the polymerase and RNase H activities. After the complete heteroduplex was formed, there were additional RNase H cleavages that did not involve polymerization. Levels of NC that prevented TAR DNA self-priming did not protect genomic RNA from RNase H digestion. RNase H digestion of the 100-bp heteroduplex produced a 14-base RNA from the 5′ end of the RNA that remained annealed to the 3′ end of the minus-strand strong-stop DNA only if NC was present in the reaction.


2007 ◽  
Vol 81 (13) ◽  
pp. 7099-7110 ◽  
Author(s):  
Jean L. Mbisa ◽  
Rebekah Barr ◽  
James A. Thomas ◽  
Nick Vandegraaff ◽  
Irene J. Dorweiler ◽  
...  

ABSTRACT Encapsidation of host restriction factor APOBEC3G (A3G) into vif-deficient human immunodeficiency virus type 1 (HIV-1) blocks virus replication at least partly by C-to-U deamination of viral minus-strand DNA, resulting in G-to-A hypermutation. A3G may also inhibit HIV-1 replication by reducing viral DNA synthesis and inducing viral DNA degradation. To gain further insight into the mechanisms of viral inhibition, we examined the metabolism of A3G-exposed viral DNA. We observed that an overall 35-fold decrease in viral infectivity was accompanied by a five- to sevenfold reduction in viral DNA synthesis. Wild-type A3G induced an additional fivefold decrease in the amount of viral DNA that was integrated into the host cell genome and similarly reduced the efficiency with which HIV-1 preintegration complexes (PICs) integrated into a target DNA in vitro. The A3G C-terminal catalytic domain was required for both of these antiviral activities. Southern blotting analysis of PICs showed that A3G reduced the efficiency and specificity of primer tRNA processing and removal, resulting in viral DNA ends that are inefficient substrates for integration and plus-strand DNA transfer. However, the decrease in plus-strand DNA transfer did not account for all of the observed decrease in viral DNA synthesis associated with A3G. These novel observations suggest that HIV-1 cDNA produced in the presence of A3G exhibits defects in primer tRNA processing, plus-strand DNA transfer, and integration.


2003 ◽  
Vol 77 (20) ◽  
pp. 11050-11059 ◽  
Author(s):  
Marcus Padow ◽  
Lilin Lai ◽  
Champion Deivanayagam ◽  
Lawrence J. DeLucas ◽  
Robert B. Weiss ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein augments the initiation of reverse transcription. Chimeric HIV-1 containing HIV-2 IN (SG3IN2) is severely impaired in virus infectivity and DNA synthesis. To analyze the nature of this defect, we infected T cells with the chimeric SG3IN2 virus and by continuous passage in cell culture selected for virus with improved replication properties. Viruses from two different time points were chosen for further analysis, an early culture-adapted virus (CF-65) that exhibited an intermediate level of infectivity, and a later-passaged virus (CF-131) that was significantly more infectious. Sequence analysis of multiple clones derived from the CF-65 virus culture demonstrated a diversity of mutations in the reverse transcriptase (RT) and a common V204I IN mutation. Analysis of clones derived from the CF-131 virus indicated the selection of two additional IN mutations, Q96H and K127E, and a fixed V179I RT mutation. By cloning RT and/or IN sequences back into the original SG3IN2 chimeric virus, we demonstrated that mutations in both RT and IN contributed to the improvement in viral fitness. The effect of the HIV-2IN(IN2) mutations on virus DNA synthesis was analyzed by packaging IN2 mutants into HIV-1 as Vpr-IN2 fusion proteins. This analysis revealed that the Q96H, K127E and V204I mutations increased the infectivity of the chimeric virus by augmenting the initiation of viral cDNA synthesis in infected cells. The Q96H and K127E mutations are present in adjacent helical structures on the surface of the IN protein and together account for most of the increase observed in DNA synthesis. Our findings provide evidence that the IN protein augments the initiation of reverse transcription through specific interactions with other viral components comprising the initiation complex. Moreover, they implicate specific regions on the surface of IN that may help to elucidate mechanisms by which the HIV-1 IN protein augments the initiation of HIV-1 reverse transcription in vivo.


1998 ◽  
Vol 72 (6) ◽  
pp. 4633-4642 ◽  
Author(s):  
Helena Schmidtmayerova ◽  
Massimo Alfano ◽  
Gerard Nuovo ◽  
Michael Bukrinsky

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) laboratory strains adapted to T-cell lines, as well as most syncytium-inducing primary isolates, replicate poorly in macrophages, which, beside CD4+ T lymphocytes, are major targets of HIV-1. In the present work, we used a semiquantitative PCR-based technique to study viral entry into cells, kinetics of reverse transcription, and translocation of the viral DNA into the nucleus of macrophages infected with different HIV-1 strains. Our results demonstrate that T-lymphotropic strains efficiently enter macrophages. Entry was inhibited by a monoclonal antibody against CD4 and by stromal cell-derived factor 1α, a natural ligand of CXCR4, suggesting that both CD4 and CXCR4 act as receptors on macrophages for HIV-1 T-lymphotropic strains. Analysis of the kinetics of reverse transcription and nuclear import revealed that the most pronounced differences between T-lymphotropic and macrophagetropic strains occurred at the level of nuclear translocation of viral DNA, although a delay in reverse transcription was also observed. These results suggest that postentry steps are critical for restricted replication of T-lymphotropic HIV-1 strains in macrophages.


2003 ◽  
Vol 77 (16) ◽  
pp. 8621-8632 ◽  
Author(s):  
Karidia Diallo ◽  
Bruno Marchand ◽  
Xin Wei ◽  
Luciano Cellai ◽  
Matthias Götte ◽  
...  

ABSTRACT The emergence of drug resistance-conferring mutations can severely compromise the success of chemotherapy directed against human immunodeficiency virus type 1 (HIV-1). The M184V and/or L74V mutation in the reverse transcriptase (RT) gene are frequently found in viral isolates from patients treated with the nucleoside RT inhibitors lamivudine (3TC), abacavir (ABC), and didanosine (ddI). However, the effectiveness of combination therapy with regimens containing these compounds is often not abolished in the presence of these mutations; it has been conjectured that diminished fitness of HIV-1 variants containing L74V and M184V may contribute to sustained antiviral effects in such cases. We have determined that viruses containing both L74V and M184V are more impaired in replication capacity than viruses containing either mutation alone. To understand the biochemical mechanisms responsible for this diminished fitness, we generated a series of recombinant mutated enzymes containing either or both of the L74V and M184V substitutions. These enzymes were tested for their abilities to bypass important rate-limiting steps during the complex process of reverse transcription. We studied both the initiation of minus-strand DNA synthesis with the cognate replication primer human tRNA3 Lys and the initiation of plus-strand DNA synthesis, using a short RNA primer derived from the viral polypurine tract. We observed that the efficiencies of both reactions were diminished with enzymes containing either L74V or M184V and that these effects were significantly amplified with the double mutant. We also show that release from intrinsic pausing sites during reverse transcription appears to be a major obstacle that cannot be efficiently bypassed. Our data suggest that the efficiency of RNA-primed DNA synthesis represents an important consideration that can affect viral replication kinetics.


2015 ◽  
Vol 396 (12) ◽  
pp. 1315-1323
Author(s):  
Bianca Heyn ◽  
Nicole Pogodalla ◽  
Susanne Brakmann

Abstract Changes of Leu109 and Arg448 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have as yet not been associated with altered fitness. However, in a recent study, we described that the simultaneous substitution of L109 and R448 by methionine leads to an error-producing polymerase phenotype that is not observed for the isolated substitutions. The double mutant increased the error rate of DNA-dependent DNA synthesis 3.1-fold as compared to the wildtype enzyme and showed a mutational spectrum with a fraction of 28% frameshift mutations and 48% transitions. We show here that weaker binding of DNA:DNA primer-templates as indicated by an increased dissociation rate constant (koff) could account for the higher frameshift error rate. Furthermore, we were able to explain the prevalence of transition mutations with the finding that HIV-1 RT variant L109M/R448M preferred misincorporation of C opposite A and elongation of C:A mismatches.


2009 ◽  
Vol 83 (11) ◽  
pp. 5592-5605 ◽  
Author(s):  
Awet Abraha ◽  
Immaculate L. Nankya ◽  
Richard Gibson ◽  
Korey Demers ◽  
Denis M. Tebit ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) subtype C is the dominant subtype globally, due largely to the incidence of subtype C infections in sub-Saharan Africa and east Asia. We compared the relative replicative fitness (ex vivo) of the major (M) group of HIV-1 subtypes A, B, C, D, and CRF01_AE and group O isolates. To estimate pathogenic fitness, pairwise competitions were performed between CCR5-tropic (R5) or CXCR4-tropic (X4) virus isolates in peripheral blood mononuclear cells (PBMC). A general fitness order was observed among 33 HIV-1 isolates; subtype B and D HIV-1 isolates were slightly more fit than the subtype A and dramatically more fit than the 12 subtype C isolates. All group M isolates were more fit (ex vivo) than the group O isolates. To estimate ex vivo transmission fitness, a subset of primary HIV-1 isolates were examined in primary human explants from penile, cervical, and rectal tissues. Only R5 isolates and no X4 HIV-1 isolates could replicate in these tissues, whereas the spread to PM1 cells was dependent on active replication and passive virus transfer. In tissue competition experiments, subtype C isolates could compete with and, in some cases, even win over subtype A and D isolates. However, when the migratory cells from infected tissues were mixed with a susceptible cell line, the subtype C isolates were outcompeted by other subtypes, as observed in experiments with PBMC. These findings suggest that subtype C HIV-1 isolates might have equal transmission fitness but reduced pathogenic fitness relative to other group M HIV-1 isolates.


Sign in / Sign up

Export Citation Format

Share Document