scholarly journals Virological Synapse-Mediated Spread of Human Immunodeficiency Virus Type 1 between T Cells Is Sensitive to Entry Inhibition

2010 ◽  
Vol 84 (7) ◽  
pp. 3516-3527 ◽  
Author(s):  
Nicola Martin ◽  
Sonja Welsch ◽  
Clare Jolly ◽  
John A. G. Briggs ◽  
David Vaux ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can disseminate between CD4+ T cells via diffusion-limited cell-free viral spread or by directed cell-cell transfer using virally induced structures termed virological synapses. Although T-cell virological synapses have been well characterized, it is unclear whether this mode of viral spread is susceptible to inhibition by neutralizing antibodies and entry inhibitors. We show here that both cell-cell and cell-free viral spread are equivalently sensitive to entry inhibition. Fluorescence imaging analysis measuring virological synapse lifetimes and inhibitor time-of-addition studies implied that inhibitors can access preformed virological synapses and interfere with HIV-1 cell-cell infection. This concept was supported by electron tomography that revealed the T-cell virological synapse to be a relatively permeable structure. Virological synapse-mediated HIV-1 spread is thus efficient but is not an immune or entry inhibitor evasion mechanism, a result that is encouraging for vaccine and drug design.

2007 ◽  
Vol 81 (11) ◽  
pp. 5547-5560 ◽  
Author(s):  
Clare Jolly ◽  
Ivonne Mitar ◽  
Quentin J. Sattentau

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection of CD4+ T cells leads to the production of new virions that assemble at the plasma membrane. Gag and Env accumulate in the context of lipid rafts at the inner and outer leaflets of the plasma membrane, respectively, forming polarized domains from which HIV-1 buds. HIV-1 budding can result in either release of cell-free virions or direct cell-cell spread via a virological synapse (VS). The recruitment of Gag and Env to these plasma membrane caps in T cells is poorly understood but may require elements of the T-cell secretory apparatus coordinated by the cytoskeleton. Using fixed-cell immunofluorescence labeling and confocal microscopy, we observed a high percentage of HIV-1-infected T cells with polarized Env and Gag in capped, lipid raft-like assembly domains. Treatment of infected T cells with inhibitors of actin or tubulin remodeling disrupted Gag and Env compartmentalization within the polarized raft-like domains. Depolymerization of the actin cytoskeleton reduced Gag release and viral infectivity, and actin and tubulin inhibitors reduced Env incorporation into virions. Live- and fixed-cell confocal imaging and assay of de novo DNA synthesis by real-time PCR allowed quantification of HIV-1 cell-cell transfer. Inhibition of actin and tubulin remodeling in infected cells interfered with cell-cell spread across a VS and reduced new viral DNA synthesis. Based on these data, we propose that HIV-1 requires both actin and tubulin components of the T-cell cytoskeleton to direct its assembly and budding and to elaborate a functional VS.


2005 ◽  
Vol 79 (18) ◽  
pp. 12088-12094 ◽  
Author(s):  
Clare Jolly ◽  
Quentin J. Sattentau

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can spread directly between T cells by forming a supramolecular structure termed a virological synapse (VS). HIV-1 envelope glycoproteins (Env) are required for VS assembly, but their mode of recruitment is unclear. We investigated the distribution of GM1-rich lipid rafts in HIV-1-infected (effector) T cells and observed Env colocalization with polarized raft markers GM1 and CD59 but not with the transferrin receptor that is excluded from lipid rafts. In conjugates of effector T cells and target CD4+ T cells, GM1, Env, and Gag relocated to the cell-cell interface. The depletion of cholesterol in the infected cell dispersed Env and GM1 within the plasma membrane, eliminated Gag clustering at the site of cell-cell contact, and abolished assembly of the VS. Raft integrity is therefore critical for Env and Gag coclustering and VS assembly in T-cell conjugates.


2007 ◽  
Vol 81 (24) ◽  
pp. 13916-13921 ◽  
Author(s):  
Clare Jolly ◽  
Ivonne Mitar ◽  
Quentin J. Sattentau

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can spread between CD4+ T cells by using a virological synapse (VS). The VS assembly is a cytoskeleton-driven process dependent on HIV-1 envelope glycoprotein (Env)-receptor engagement and is hypothesized to require adhesion molecule interactions. Here we demonstrate that leukocyte function-associated antigen 1 (LFA-1), intercellular adhesion molecule 1 (ICAM-1), and ICAM-3 are enriched at the VS and that inhibition of these interactions influences conjugate formation and reduces VS assembly. Moreover, CD4+ T cells deficient in LFA-1 or with modified LFA-1 function were less able to support VS assembly and cell-cell transfer of HIV-1. Thus, cognate adhesion molecule interactions at the VS are important for HIV-1 spread between T cells.


2007 ◽  
Vol 81 (15) ◽  
pp. 7873-7884 ◽  
Author(s):  
Clare Jolly ◽  
Quentin J. Sattentau

ABSTRACT Human immunodeficiency virus type-1 (HIV-1) egress from infected CD4+ T cells is thought to be via assembly and budding at the plasma membrane and may involve components of the T-cell secretory apparatus, including tetraspanins. However, many studies on HIV-1 assembly have examined the trafficking of viral proteins in isolation, and most have used immortalized epithelial, fibroblastic, or hematopoietic cell lines that may not necessarily reflect natural infection of susceptible T cells. Here we have used immunofluorescence and cryoimmunoelectron microscopy (CEM) to examine protein transport during HIV-1 assembly in productively infected Jurkat CD4+ T cells and primary CD4+ T cells. The HIV-1 envelope glycoprotein (Env) and the core protein (Gag) colocalize strongly with CD63 and CD81 and less strongly with CD9, whereas no colocalization was seen between Env or Gag and the late endosome/lysosomal marker Lamp2. CEM revealed incorporation of CD63 and CD81 but not Lamp2 into virions budding at the plasma membrane, and this was supported by immunoprecipitation studies, confirming that HIV-1 egress in T cells is trafficked via tetraspanin-enriched membrane domains (TEMs) that are distinct from lysosomal compartments. CD63, CD81, and, to a lesser extent, CD9 were recruited to the virological synapse (VS), and antibodies against these tetraspanins reduced VS formation. We propose that HIV-1 promotes virus assembly and cell-cell transfer in T cells by targeting plasma membrane TEMs.


2008 ◽  
Vol 82 (19) ◽  
pp. 9445-9457 ◽  
Author(s):  
Gaia Vasiliver-Shamis ◽  
Michael Tuen ◽  
Teresa W. Wu ◽  
Toby Starr ◽  
Thomas O. Cameron ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-infected T cells form a virological synapse with noninfected CD4+ T cells in order to efficiently transfer HIV-1 virions from cell to cell. The virological synapse is a specialized cellular junction that is similar in some respects to the immunological synapse involved in T-cell activation and effector functions mediated by the T-cell antigen receptor. The immunological synapse stops T-cell migration to allow a sustained interaction between T-cells and antigen-presenting cells. Here, we have asked whether HIV-1 envelope gp120 presented on a surface to mimic an HIV-1-infected cell also delivers a stop signal and if this is sufficient to induce a virological synapse. We demonstrate that HIV-1 gp120-presenting surfaces arrested the migration of primary activated CD4 T cells that occurs spontaneously in the presence of ICAM-1 and induced the formation of a virological synapse, which was characterized by segregated supramolecular structures with a central cluster of envelope surrounded by a ring of ICAM-1. The virological synapse was formed transiently, with the initiation of migration within 30 min. Thus, HIV-1 gp120-presenting surfaces induce a transient stop signal and supramolecular segregation in noninfected CD4+ T cells.


2002 ◽  
Vol 46 (4) ◽  
pp. 982-990 ◽  
Author(s):  
Jan Münch ◽  
Ludger Ständker ◽  
Stefan Pöhlmann ◽  
Frédéric Baribaud ◽  
Armin Papkalla ◽  
...  

ABSTRACT Proteolytic processing of the abundant plasmatic human CC chemokine 1 (HCC-1) generates a truncated form, HCC-1[9-74], which is a potent agonist of CCR1, CCR3, and CCR5; promotes calcium influx and chemotaxis of T lymphoblasts, monocytes, and eosinophils; and inhibits infection by CCR5-tropic human immunodeficiency virus type 1 (HIV-1) isolates. In the present study we demonstrate that HCC-1[9-74] interacts with the second external loop of CCR5 and inhibits replication of CCR5-tropic HIV-1 strains in both primary T cells and monocyte-derived macrophages. Low concentrations of the chemokine, however, frequently enhanced the replication of CCR5-tropic HIV-1 isolates but not the replication of X4-tropic HIV-1 isolates. Only HCC-1[9-74] and HCC-1[10-74], but not other HCC-1 length variants, displayed potent anti-HIV-1 activities. Fluorescence-activated cell sorter analysis revealed that HCC-1[9-74] caused up to 75% down-regulation of CCR5 cell surface expression, whereas RANTES (regulated on activation, normal T-cell expressed and secreted) achieved a reduction of only about 40%. Studies performed with green fluorescent protein-tagged CCR5 confirmed that both HCC-1[9-74] and RANTES, but not full-length HCC-1, mediated specific internalization of the CCR5 HIV-1 entry cofactor. Our results demonstrate that the interaction with HCC-1[9-74] causes effective intracellular sequestration of CCR5, but they also indicate that the effect of HCC-1[9-74] on viral replication is subject to marked cell donor- and HIV-1 isolate-dependent variations.


2005 ◽  
Vol 79 (15) ◽  
pp. 10053-10058 ◽  
Author(s):  
Angélique B. van ′t Wout ◽  
J. Victor Swain ◽  
Michael Schindler ◽  
Ushnal Rao ◽  
Melissa S. Pathmajeyan ◽  
...  

ABSTRACT Several recent reports indicate that cholesterol might play an important role in human immunodeficiency virus type 1 (HIV-1) replication. We investigated the effects of HIV-1 infection on cholesterol biosynthesis and uptake using microarrays. HIV-1 increased gene expression of cholesterol genes in both transformed T-cell lines and primary CD4+ T cells. Consistent with our microarray data, 14C-labeled mevalonate and acetate incorporation was increased in HIV-1-infected cells. Our data also demonstrate that changes in cholesterol biosynthesis and uptake are only observed in the presence of functional Nef, suggesting that increased cholesterol synthesis may contribute to Nef-mediated enhancement of virion infectivity and viral replication.


2005 ◽  
Vol 79 (5) ◽  
pp. 3195-3199 ◽  
Author(s):  
Jean-Daniel Lelièvre ◽  
Frédéric Petit ◽  
Damien Arnoult ◽  
Jean-Claude Ameisen ◽  
Jérôme Estaquier

ABSTRACT Fas-mediated T-cell death is known to occur during human immunodeficiency virus (HIV) infection. In this study, we found that HIV type 1 LAI (HIV-1LAI) primes CD8+ T cells from healthy donors for apoptosis, which occurs after Fas ligation. This effect is counteracted by a broad caspase inhibitor (zVAD-fmk). Fas-mediated cell death does not depend on CD8+ T-cell infection, because it occurred in the presence of reverse transcriptase inhibitors. However, purified CD8+ T cells are sensitive to Fas only in the presence of soluble CD4. Finally, we found that interleukin 7 (IL-7) increases Fas-mediated CD4+ and CD8+ T-cell death induced by HIV-1LAI. Since high levels of IL-7 are a marker of poor prognosis during HIV infection, our data suggest that enhancement of Fas-mediated T-cell death by HIV-1LAI and IL-7 is one of the mechanisms involved in progression to AIDS.


2002 ◽  
Vol 76 (15) ◽  
pp. 7812-7821 ◽  
Author(s):  
Rogier W. Sanders ◽  
Esther C. de Jong ◽  
Christopher E. Baldwin ◽  
Joost H. N. Schuitemaker ◽  
Martien L. Kapsenberg ◽  
...  

ABSTRACT Dendritic cells (DC) support human immunodeficiency virus type 1 (HIV-1) transmission by capture of the virus particle in the mucosa and subsequent transport to the draining lymph node, where HIV-1 is presented to CD4+ Th cells. Virus transmission involves a high-affinity interaction between the DC-specific surface molecule DC-SIGN and the viral envelope glycoprotein gp120 and subsequent internalization of the virus, which remains infectious. The mechanism of viral transmission from DC to T cells is currently unknown. Sentinel immature DC (iDC) develop into Th1-promoting effector DC1 or Th2-promoting DC2, depending on the activation signals. We studied the ability of these effector DC subsets to support HIV-1 transmission in vitro. Compared with iDC, virus transmission is greatly upregulated for the DC1 subset, whereas DC2 cells are inactive. Increased transmission by DC1 correlates with increased expression of ICAM-1, and blocking studies confirm that ICAM-1 expression on DC is important for HIV transmission. The ICAM-1-LFA-1 interaction is known to be important for immunological cross talk between DC and T cells, and our results indicate that this cell-cell contact is exploited by HIV-1 for efficient transmission.


Sign in / Sign up

Export Citation Format

Share Document