scholarly journals Differential Transmission of Human Immunodeficiency Virus Type 1 by Distinct Subsets of Effector Dendritic Cells

2002 ◽  
Vol 76 (15) ◽  
pp. 7812-7821 ◽  
Author(s):  
Rogier W. Sanders ◽  
Esther C. de Jong ◽  
Christopher E. Baldwin ◽  
Joost H. N. Schuitemaker ◽  
Martien L. Kapsenberg ◽  
...  

ABSTRACT Dendritic cells (DC) support human immunodeficiency virus type 1 (HIV-1) transmission by capture of the virus particle in the mucosa and subsequent transport to the draining lymph node, where HIV-1 is presented to CD4+ Th cells. Virus transmission involves a high-affinity interaction between the DC-specific surface molecule DC-SIGN and the viral envelope glycoprotein gp120 and subsequent internalization of the virus, which remains infectious. The mechanism of viral transmission from DC to T cells is currently unknown. Sentinel immature DC (iDC) develop into Th1-promoting effector DC1 or Th2-promoting DC2, depending on the activation signals. We studied the ability of these effector DC subsets to support HIV-1 transmission in vitro. Compared with iDC, virus transmission is greatly upregulated for the DC1 subset, whereas DC2 cells are inactive. Increased transmission by DC1 correlates with increased expression of ICAM-1, and blocking studies confirm that ICAM-1 expression on DC is important for HIV transmission. The ICAM-1-LFA-1 interaction is known to be important for immunological cross talk between DC and T cells, and our results indicate that this cell-cell contact is exploited by HIV-1 for efficient transmission.

1999 ◽  
Vol 73 (4) ◽  
pp. 3449-3454 ◽  
Author(s):  
Ines Frank ◽  
Laco Kacani ◽  
Heribert Stoiber ◽  
Hella Stössel ◽  
Martin Spruth ◽  
...  

ABSTRACT During the budding process, human immunodeficiency virus type 1 (HIV-1) acquires cell surface molecules; thus, the viral surface of HIV-1 reflects the antigenic pattern of the host cell. To determine the source of HIV-1 released from cocultures of dendritic cells (DC) with T cells, immature DC (imDC), mature DC (mDC), T cells, and their cocultures were infected with different HIV-1 isolates. The macrophage-tropic HIV-1 isolate Ba-L allowed viral replication in both imDC and mDC, whereas the T-cell-line-tropic primary isolate PI21 replicated in mDC only. By a virus capture assay, HIV-1 was shown to carry a T-cell- or DC-specific cell surface pattern after production by T cells or DC, respectively. Upon cocultivation of HIV-1-pulsed DC with T cells, HIV-1 exclusively displayed a typical T-cell pattern. Additionally, functional analysis revealed that HIV-1 released from imDC–T-cell cocultures was more infectious than HIV-1 derived from mDC–T-cell cocultures and from cultures of DC, T cells, or peripheral blood mononuclear cells alone. Therefore, we conclude that the interaction of HIV-1-pulsed imDC with T cells in vivo might generate highly infectious virus which primarily originates from T cells.


2007 ◽  
Vol 81 (14) ◽  
pp. 7559-7570 ◽  
Author(s):  
Nuria Izquierdo-Useros ◽  
Julià Blanco ◽  
Itziar Erkizia ◽  
Maria Teresa Fernández-Figueras ◽  
Francesc E. Borràs ◽  
...  

ABSTRACT Dendritic cells (DCs) are specialized antigen-presenting cells. However, DCs exposed to human immunodeficiency virus type 1 (HIV-1) are also able to transmit a vigorous cytopathic infection to CD4+ T cells, a process that has been frequently related to the ability of DC-SIGN to bind HIV-1 envelope glycoproteins. The maturation of DCs can increase the efficiency of HIV-1 transmission through trans infection. We aimed to comparatively study the effect of maturation in monocyte-derived DCs (MDDCs) and blood-derived myeloid DCs during the HIV-1 capture process. In vitro capture and transmission of envelope-pseudotyped HIV-1 and its homologous replication-competent virus to susceptible target cells were assessed by p24gag detection, luciferase activity, and both confocal and electron microscopy. Maturation of MDDCs or myeloid DCs enhanced the active capture of HIV-1 in a DC-SIGN- and viral envelope glycoprotein-independent manner, increasing the life span of trapped virus. Moreover, higher viral transmission of mature DCs to CD4+ T cells was highly dependent on active viral capture, a process mediated through cholesterol-enriched domains. Mature DCs concentrated captured virus in a single large vesicle staining for CD81 and CD63 tetraspanins, while immature DCs lacked these structures, suggesting different intracellular trafficking processes. These observations help to explain the greater ability of mature DCs to transfer HIV-1 to T lymphocytes, a process that can potentially contribute to the viral dissemination at lymph nodes in vivo, where viral replication takes place and there is a continuous interaction between susceptible T cells and mature DCs.


2002 ◽  
Vol 76 (6) ◽  
pp. 3007-3014 ◽  
Author(s):  
Xiao-Qing Zhao ◽  
Xiao-Li Huang ◽  
Phalguni Gupta ◽  
Luann Borowski ◽  
Zheng Fan ◽  
...  

ABSTRACT T-cell responses to X4 strains of human immunodeficiency virus type 1 (HIV-1) are considered important in controlling progression of HIV-1 infection. We investigated the ability of dendritic cells (DC) and various forms of HIV-1 X4 antigen to induce anti-HIV-1 T-cell responses in autologous peripheral blood mononuclear cells from HIV-1-infected persons. Immature DC loaded with HIV-1 IIIB-infected, autologous, apoptotic CD8− cells and matured with CD40 ligand induced gamma interferon production in autologous CD8+ and CD4+ T cells. In contrast, mature DC loaded with HIV-1 IIIB-infected, necrotic cells or directly infected with cell-free HIV-1 IIIB were poorly immunogenic. Thus, HIV-1-infected cells undergoing apoptosis serve as a rich source of X4 antigen for CD8+ and CD4+ T cells by DC. This may be an important mechanism of HIV-1 immunogenicity and provides a strategy for immunotherapy of HIV-1-infected patients on combination antiretroviral therapy.


1998 ◽  
Vol 72 (8) ◽  
pp. 6671-6677 ◽  
Author(s):  
Laco Kacani ◽  
Ines Frank ◽  
Martin Spruth ◽  
Michael G. Schwendinger ◽  
Brigitte Müllauer ◽  
...  

ABSTRACT Previous studies have shown that human immunodeficiency virus type 1 (HIV-1) exploits dendritic cells (DC) to replicate and spread among CD4+ T cells. To explain the predominance of non-syncytium-inducing (NSI) over syncytium-inducing (SI) strains during the initial viremia of HIV, we investigated the ability of blood monocyte (Mo)-derived DC to transmit HIV-1 to CD4+ cells of the monocytoid lineage. First, we demonstrate that in our system, DC are able to transmit NSI strains, but not SI strains, of HIV-1 to fresh blood Mo and to Mo-derived macrophages (MDM). To establish a productive infection, a 10-fold-lower amount of virus was necessary for DC-mediated transmission of HIV-1 to Mo than in case of cell-free infection. Second, immature CD83− DC (imDC) transmit virus to Mo and MDM with higher efficacy compared to mature CD83+DC (maDC); this finding is in contrast to data previously obtained with CD4+ T cells. Third, maturation from imDC to maDC efficiently silenced expression of β2-integrins CD11b, CD11c, and CD18 by maDC. Moreover, monoclonal antibody against CD18 inhibited transmission of HIV-1 from imDC to Mo. We propose that the adhesion molecules of the CD11/CD18 family, involved in cell-cell interactions of DC with the microenvironment, may play a major role in imDC-mediated HIV-1 infection of Mo and MDM.


1998 ◽  
Vol 72 (12) ◽  
pp. 9788-9794 ◽  
Author(s):  
Sarah S. Frankel ◽  
Ralph M. Steinman ◽  
Nelson L. Michael ◽  
Silvia Ratto Kim ◽  
Nina Bhardwaj ◽  
...  

ABSTRACT Prevention of the initial infection of mucosal dendritic cells (DC) and interruption of the subsequent transmission of HIV-1 from DC to T cells are likely to be important attributes of an effective human immunodeficiency virus type 1 (HIV-1) vaccine. While anti-HIV-1 neutralizing antibodies have been difficult to elicit by immunization, there are several human monoclonal antibodies (MAbs) that effectively neutralize virus infection of activated T cells. We investigated the ability of three well-characterized neutralizing MAbs (IgG1b12, 2F5, and 2G12) to block HIV-1 infection of human DC. DC were generated from CD14+ blood cells or obtained from cadaveric human skin. The MAbs prevented viral entry into purified DC and the ensuing productive infection in DC/T-cell cultures. When DC were first pulsed with HIV-1, MAbs blocked the subsequent transmission to unstimulated CD3+ T cells. Thus, neutralizing antibodies can block HIV-1 infection of DC and the cell-to-cell transmission of virus from infected DC to T cells. These data suggest that neutralizing antibodies could interrupt the initial events associated with mucosal transmission and regional spread of HIV-1.


2005 ◽  
Vol 79 (5) ◽  
pp. 3052-3062 ◽  
Author(s):  
Xiao-Li Huang ◽  
Zheng Fan ◽  
Bonnie A. Colleton ◽  
Rico Buchli ◽  
Hongyi Li ◽  
...  

ABSTRACT Dendritic cells (DCs) loaded with viral peptides are a potential form of immunotherapy of human immunodeficiency virus type 1 (HIV-1) infection. We show that DCs derived from blood monocytes of subjects with chronic HIV-1 infection on combination antiretroviral drug therapy have increases in expression of HLA, T-cell coreceptor, and T-cell activation molecules in response to the DC maturation factor CD40L comparable to those from uninfected persons. Mature DCs (mDCs) loaded with HLA A*0201-restricted viral peptides of the optimal length (9-mer) were more efficient at activating antiviral CD8+ T cells than were immature DCs or peptide alone. Optimal presentation of these exogenous peptides required uptake and vesicular trafficking and was comparable in DCs derived from HIV-1-infected and uninfected persons. Furthermore, DCs from HIV-1-infected and uninfected persons had similar capacities to process viral peptides with C-terminal and N-terminal extensions through their proteasomal and cytosolic pathways, respectively. We conclude that DCs derived from HIV-1-infected persons have similar abilities to process exogenous peptides for presentation to CD8+ T cells as those from uninfected persons. This conclusion supports the use of DCs loaded with synthetic peptides in immunotherapy of HIV-1 infection.


2007 ◽  
Vol 81 (20) ◽  
pp. 11352-11362 ◽  
Author(s):  
Chunsheng Dong ◽  
Alicia M. Janas ◽  
Jian-Hua Wang ◽  
Wendy J. Olson ◽  
Li Wu

ABSTRACT Dendritic cells (DCs) transmit human immunodeficiency virus type 1 (HIV-1) to CD4+ T cells through the trans- and cis-infection pathways; however, little is known about the relative efficiencies of these pathways and whether they are interdependent. Here we compare cis- and trans-infections of HIV-1 mediated by immature DCs (iDCs) and mature DCs (mDCs), using replication-competent and single-cycle HIV-1. Monocyte-derived iDCs were differentiated into various types of mDCs by lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-α), and CD40 ligand (CD40L). iDCs and CD40L-induced mDCs were susceptible to HIV-1 infection and mediated efficient viral transmission to CD4+ T cells. Although HIV-1 cis-infection was partially restricted in TNF-α-induced mDCs and profoundly blocked in LPS-induced mDCs, these cells efficiently promoted HIV-1 trans-infection of CD4+ T cells. The postentry restriction of HIV-1 infection in LPS-induced mDCs was identified at the levels of reverse transcription and postintegration, using real-time PCR quantification of viral DNA and integration. Furthermore, nucleofection of DCs with HIV-1 proviral DNA confirmed that impaired gene expression of LPS-induced mDCs was responsible for the postentry restriction of HIV-1 infection. Our results suggest that various DC subsets in vivo may differentially contribute to HIV-1 dissemination via dissociable cis- and trans-infections.


1999 ◽  
Vol 73 (5) ◽  
pp. 3603-3607 ◽  
Author(s):  
Masatoshi Fujiwara ◽  
Rikiya Tsunoda ◽  
Shiro Shigeta ◽  
Tomoyuki Yokota ◽  
Masanori Baba

ABSTRACT It has been reported that human immunodeficiency virus type 1 (HIV-1) bound to follicular dendritic cells (FDCs) remains highly infectious to CD4+ T cells even when it forms immune complexes with neutralizing antibody (HIV-1/IC). To elucidate the role of FDCs in HIV-1 transmission to CD4+ T cells in lymph nodes, we have isolated and purified FDCs from human tonsils and examined whether the HIV-1/IC trapped on their surface is infectious to CD4+ T cells. To our surprise, not the HIV-1/IC but the antibody-free HIV-1 on FDCs could be transmitted to CD4+ T cells. Furthermore, in contrast to previous studies showing that FDCs are productively infected with HIV-1, the present study clearly demonstrated that FDCs were not the target cells for HIV-1 infection. FDCs could capture the viral particles on their surface; however, the binding of HIV-1 to FDCs was strongly inhibited by the presence of anti-CD54 (ICAM-1) monoclonal antibody (MAb) and anti-CD11a (LFA-1) MAb, suggesting that the adhesion molecules play an important role in the interaction between HIV-1 and FDCs.


2008 ◽  
Vol 83 (6) ◽  
pp. 2778-2782 ◽  
Author(s):  
Corinne Barat ◽  
Caroline Gilbert ◽  
Michel J. Tremblay

ABSTRACT Dendritic cells (DC) are considered to be important contributors to human immunodeficiency virus type 1 (HIV-1) transmission and pathogenesis. As the first target cells in mucosal tissues, they can be become productively infected and can also capture virions and transfer them efficiently to CD4+ T cells located within lymphoid tissues. Resting CD4+ T cells appear to be another major target of HIV-1 in vivo, yet several blocks restrict replication in such cells. We report here that physical contact between virus-infected quiescent CD4+ T cells and uninfected autologous immature DC in the absence of any foreign antigen relieves these restrictions, allowing a highly productive HIV-1 replication.


2002 ◽  
Vol 46 (4) ◽  
pp. 982-990 ◽  
Author(s):  
Jan Münch ◽  
Ludger Ständker ◽  
Stefan Pöhlmann ◽  
Frédéric Baribaud ◽  
Armin Papkalla ◽  
...  

ABSTRACT Proteolytic processing of the abundant plasmatic human CC chemokine 1 (HCC-1) generates a truncated form, HCC-1[9-74], which is a potent agonist of CCR1, CCR3, and CCR5; promotes calcium influx and chemotaxis of T lymphoblasts, monocytes, and eosinophils; and inhibits infection by CCR5-tropic human immunodeficiency virus type 1 (HIV-1) isolates. In the present study we demonstrate that HCC-1[9-74] interacts with the second external loop of CCR5 and inhibits replication of CCR5-tropic HIV-1 strains in both primary T cells and monocyte-derived macrophages. Low concentrations of the chemokine, however, frequently enhanced the replication of CCR5-tropic HIV-1 isolates but not the replication of X4-tropic HIV-1 isolates. Only HCC-1[9-74] and HCC-1[10-74], but not other HCC-1 length variants, displayed potent anti-HIV-1 activities. Fluorescence-activated cell sorter analysis revealed that HCC-1[9-74] caused up to 75% down-regulation of CCR5 cell surface expression, whereas RANTES (regulated on activation, normal T-cell expressed and secreted) achieved a reduction of only about 40%. Studies performed with green fluorescent protein-tagged CCR5 confirmed that both HCC-1[9-74] and RANTES, but not full-length HCC-1, mediated specific internalization of the CCR5 HIV-1 entry cofactor. Our results demonstrate that the interaction with HCC-1[9-74] causes effective intracellular sequestration of CCR5, but they also indicate that the effect of HCC-1[9-74] on viral replication is subject to marked cell donor- and HIV-1 isolate-dependent variations.


Sign in / Sign up

Export Citation Format

Share Document